【題目】已知O為直線AB上的一點(diǎn),射線OA表示正北方向,∠COE90°,射線OF平分∠AOE

1)如圖1,若∠AOE70°,則∠COF的度數(shù)是   

2)若將∠COE繞點(diǎn)O旋轉(zhuǎn)至圖2的位置,試判斷∠COF和∠BOE之間的數(shù)量關(guān)系,并證明你的證明;

3)若將∠COE繞點(diǎn)O旋轉(zhuǎn)至圖3的位置,直接寫(xiě)出2COF+BOE的度數(shù)是   

【答案】155°;(2)∠COFBOE,理由見(jiàn)解析;(3360°

【解析】

1)可以知道COFCOEFOE,所以只要求出FOE即可.注意到OF平分AOEAOE70°,則可求出FOE35°

2)設(shè)BOEα,則AOE180°α,求出FOE,代入COFCOEFOE即可

3)可先設(shè)AOE,則EOFβ,通過(guò)有計(jì)算出,COF90°+βBOE180°代入2∠COF+∠BOE即可求解

解:(1OF平分AOE,AOE70°

∴∠FOEAOFAOE×70°35°

∴∠COFCOEFOE90°35°55°

故答案為:55°

2COFBOE,理由如下:

設(shè)BOEα,則AOE180°α,EOFAOE180°α),

∴∠COF90°180°α)=α

∴∠COFBOE

3)設(shè)AOE,則EOFβ

∴∠COF90°+β,BOE180°

∴2∠COF+∠BOE290°+β+180°360°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,AC=8,BC=6。P是AB邊上的一個(gè)動(dòng)點(diǎn)(異于A、B兩點(diǎn)),過(guò)點(diǎn)P分別作AC、BC邊的垂線,垂足為M、N設(shè)AP=x。

(1)在△ABC中,AB ;

(2)當(dāng)x 時(shí),矩形PMCN的周長(zhǎng)是14;

(3)是否存在x的值,使得△PAM的面積、△PBN的面積與矩形PMCN的面積同時(shí)相等?請(qǐng)說(shuō)出你的判斷,并加以說(shuō)明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.

(1)試判斷四邊形AECF的形狀;

(2)若AE=BE,BAC=90°,求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張先生準(zhǔn)備在沙坪壩購(gòu)買(mǎi)一套小戶(hù)型商品房,他去某樓盤(pán)了解情況得知,該戶(hù)型商品房的單價(jià)是12000/m2,面積如圖所示(單位:米,臥室的寬為a米,衛(wèi)生間的寬為x米),

(1) 用含ax的式子表示該戶(hù)型的面積

(2) 售房部為張先生提供了以下兩種優(yōu)惠方案:

方案一:整套房的單價(jià)是12 000/m2,其中廚房只算的面積;

方案二:整套房按原銷(xiāo)售總金額的9折出售,

若張先生購(gòu)買(mǎi)的戶(hù)型a=3,且分別用兩種方案購(gòu)房金額相等,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片中,,,折疊紙片使點(diǎn)落在邊上的處,折痕為.過(guò)點(diǎn),連接.

1)求證:四邊形為菱形;

2)當(dāng)點(diǎn)邊上移動(dòng)時(shí),折痕的端點(diǎn)也隨之移動(dòng).

①當(dāng)點(diǎn)與點(diǎn)重合時(shí)(如圖),求菱形的邊長(zhǎng);

②若限定,分別在邊,上移動(dòng),求出點(diǎn)在邊上移動(dòng)的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】松山區(qū)種子培育基地用AB,C三種型號(hào)的甜玉米種子共1500粒進(jìn)行發(fā)芽試驗(yàn),從中選出發(fā)芽率高的種子進(jìn)行推廣,通過(guò)試驗(yàn)知道,C型號(hào)種子的發(fā)芽率為80%,根據(jù)試驗(yàn)數(shù)據(jù)繪制了下面兩個(gè)不完整的統(tǒng)計(jì)圖:

1)求C型號(hào)種子的發(fā)芽數(shù);

2)通過(guò)計(jì)算說(shuō)明,應(yīng)選哪種型號(hào)的種子進(jìn)行推廣?

3)如果將所有已發(fā)芽的種子放在一起,從中隨機(jī)取出一粒,求取到C型號(hào)發(fā)芽種子的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過(guò)點(diǎn)P﹣3,1),對(duì)稱(chēng)軸是經(jīng)過(guò)(﹣10)且平行于y軸的直線.

(1)求m,n的值.

(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過(guò)點(diǎn)P,與x軸相交于點(diǎn)A,與二次函數(shù)的圖象相交于另一點(diǎn)B,點(diǎn)B在點(diǎn)P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.

(3)直接寫(xiě)出y1>y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將一個(gè)邊長(zhǎng)為a厘米的正方形紙片剪去兩個(gè)小矩形,得到圖案,如圖2所示,再將剪下的兩個(gè)小矩形拼成一個(gè)新的矩形,如圖3所示:

(1)列式表示新矩形的周長(zhǎng)為______厘米(化到最簡(jiǎn)形式)

(2)如果正方形紙片的邊長(zhǎng)為8厘米,剪去的小矩形的寬為1厘米,那么所得圖形的周長(zhǎng)為______厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一家商店因換季將某種服裝打折銷(xiāo)售,每件服裝如果按標(biāo)價(jià)的4折出售將虧40元,而按標(biāo)價(jià)8折出售將賺40元.問(wèn):

(1)每件服裝的標(biāo)價(jià)是多少元?

(2)每件服裝的成本是多少元?

(3)為了保證不虧損,最多可以打幾折?

查看答案和解析>>

同步練習(xí)冊(cè)答案