如圖,已知拋物線y = ax2 + bx-4與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),經(jīng)過A、B、C三點(diǎn)的圓的圓心M(1,m)恰好在此拋物線的對稱軸上,⊙M的半徑為

(1)求m的值及拋物線的解析式;

(2)點(diǎn)P是線段上的一個動點(diǎn),過點(diǎn)P作PN∥,交于點(diǎn),連接CP,當(dāng)的面積最大時,求點(diǎn)P的坐標(biāo);

(3)點(diǎn)在(1)中拋物線上,點(diǎn)為拋物線上一動點(diǎn),在軸上是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點(diǎn)的坐標(biāo),若不存在,請說明理由。

 

【答案】

解:(1)過M作MK⊥y軸,連接MC,

由勾股定理得CK=3,∴OK=1,

 ∴m=-1

過M作MQ⊥  y軸,連接MB,

由勾股定理得BQ=3,∴B(4,0)

又M在拋物線的對稱軸上,∴A(-2,0)

  解得: 

∴拋物線的解析式為:   

(2)設(shè)點(diǎn)P的坐標(biāo)為(,0),過點(diǎn)軸于點(diǎn)(如圖)。

∵點(diǎn)的坐標(biāo)為(,0),點(diǎn)的坐標(biāo)為(4,0),

∴AB=6,AP=m+2

∵BC∥PN,∴△APN∽△ABC

,∴,∴ 

∴當(dāng)m=1時,有最大值3。此時,點(diǎn)P的坐標(biāo)為(1,0)

(3)、 

【解析】(1)過M作MK⊥y軸,連接MC,利用勾股定理即可求得m的值,過M作MQ⊥y軸,連接MB,利用勾股定理即可求得點(diǎn)A、點(diǎn)B的坐標(biāo),根據(jù)待定系數(shù)法即可求得拋物線的解析式;

(2)過點(diǎn)軸于點(diǎn),先證得△APN∽△ABC,根據(jù)對應(yīng)邊成比例即可表示出NH,從而得到面積的函數(shù)關(guān)系式,根據(jù)函數(shù)關(guān)系式的特征即可求得當(dāng)的面積最大時,點(diǎn)P的坐標(biāo);

(3)根據(jù)平行四邊形的特征分類討論。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
(4)點(diǎn)Q是直線BC上的一個動點(diǎn),若△QOB為等腰三角形,請寫出此時點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個單位長度的速度在線段OA上運(yùn)動,同時動點(diǎn)M從O點(diǎn)出發(fā)以每秒3個單位長度的速度在線段OB上運(yùn)動,過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時,正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案