【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城.在整個(gè)行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:①A,B兩城相距300千米;②乙車比甲車晚出發(fā)1小時(shí),卻早到1.5小時(shí);③乙車出發(fā)后2.5小時(shí)追上甲車;④當(dāng)甲、乙兩車相距40千米時(shí),tt,其中正確的結(jié)論有( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

【答案】A

【解析】

由圖象所給數(shù)據(jù)可求得甲、乙兩車離開A城的距離y與時(shí)間t的關(guān)系式,可求得兩函數(shù)圖象的交點(diǎn),進(jìn)而判斷,再令兩函數(shù)解析式的差為40,可求得t,可得出答案.

由圖象可知AB兩城市之間的距離為300km,故①正確;

甲行駛的時(shí)間為5小時(shí),而乙是在甲出發(fā)1小時(shí)后出發(fā)的,且用時(shí)3小時(shí),即比甲早到1小時(shí),故②錯(cuò)誤;

設(shè)甲車離開A城的距離yt的關(guān)系式為ykt

把(5,300)代入可求得k60

y60t,

y150代入y60t,可得:t2.5,

設(shè)乙車離開A城的距離yt的關(guān)系式為ymt+n

把(1,0)和(2.5,150)代入可得,解得,

y100t100

yy可得:60t100t100,解得t2.5,

即甲、乙兩直線的交點(diǎn)橫坐標(biāo)為t2.5,

此時(shí)乙出發(fā)時(shí)間為1.5小時(shí),即乙車出發(fā)1.5小時(shí)后追上甲車,故③錯(cuò)誤;

令|yy|=40,可得|60t100t+100|=40,即|10040t|=40,

當(dāng)10040t40時(shí),可解得t,

當(dāng)10040t=﹣40時(shí),可解得t,

又當(dāng)t時(shí),y40,此時(shí)乙還沒出發(fā),

當(dāng)t時(shí),乙到達(dá)B城,y260;

綜上可知當(dāng)t的值為t時(shí),兩車相距40千米,故④不正確;

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖,小東在教學(xué)樓距地面9米高的窗口C處,測(cè)得正前方旗桿頂部A點(diǎn)的仰角為37°,旗桿底部B點(diǎn)的俯角為45°,升旗時(shí),國旗上端懸掛在距地面2.25米處,若國旗隨國歌聲冉冉升起,并在國歌播放45秒結(jié)束時(shí)到達(dá)旗桿頂端,則國旗應(yīng)以多少米/秒的速度勻速上升?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,下列條件中不能判斷的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)xOy中的第一象限內(nèi),直線y1=kx(k≠0)與雙曲y2=(m≠0)的一個(gè)交點(diǎn)為A(2,2).

(1)求k、m的值;

(2)過點(diǎn)P(x,0)且垂直于x軸的直線與y1=kx、y2= 的圖象分別相交于點(diǎn)M、N,點(diǎn)M、N 的距離為d1,點(diǎn)M、N中的某一點(diǎn)與點(diǎn)P的距離為d2,如果d1=d2,在下圖中畫出示意圖并且直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某測(cè)量隊(duì)在山腳A處測(cè)得山上樹頂仰角為45°(如圖),測(cè)量隊(duì)在山坡上前進(jìn)600米到D處,再測(cè)得樹頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為(  )(精確到1米, =1.732).

A. 585 B. 1014 C. 805 D. 820

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABBC,∠ABC90°,點(diǎn)EBC上,點(diǎn)FAB的延長線上,且AECF

1)求證:ABE≌△CBF

2)若∠ACF70°,求∠EAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動(dòng)點(diǎn),連結(jié)AC并延長交⊙O于D,過點(diǎn)D作圓的切線交OB的延長線于E,已知OA=8.

(1)求證:∠ECD=∠EDC;

(2)若tanA=,求DE長;

(3)當(dāng)∠A從15°增大到30°的過程中,求弦AD在圓內(nèi)掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度數(shù);

(2)求證:直線AD是線段CE的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y的圖象上.若點(diǎn)B在反比例函數(shù)y的圖象上,則k的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案