【題目】一個(gè)圓柱的軸截面平行于投影面,圓柱的正投影是鄰邊長(zhǎng)分別為4 cm,3 cm的矩形,求圓柱的表面積和體積.
【答案】①當(dāng)圓柱底面圓的半徑為1.5cm,高為4 cm時(shí),表面積為:π (cm2),體積為:9π(cm3)
②當(dāng)圓柱底面圓的半徑為2cm,高為3 cm時(shí),表面積為:20π(cm2),體積為:12π(cm3)
【解析】
根據(jù)平行投影的性質(zhì)得出①當(dāng)圓柱底面圓的半徑為1.5 cm,高為4 cm,②當(dāng)圓柱底面圓的半徑為2 cm,高為3 cm,進(jìn)而分別求出其表面積和體積即可.
∵一個(gè)圓柱的軸截面平行于投影面,圓柱的正投影是鄰邊長(zhǎng)分別為4 cm,3 cm的矩形,
∴①當(dāng)圓柱底面圓的半徑為1.5 cm,高為4 cm,
則圓柱的表面積為2π××4+2π=12π+π=π(cm2),
體積為π×4=9π(cm3);
②當(dāng)圓柱底面圓的半徑為2 cm,高為3 cm
則圓柱的表面積為2π×2×3+2π×22=12π+8π=20π(cm2),
體積為π×22×3=12π(cm3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示.有下列結(jié)論:①b2-4ac<0;②ab>0;③a-b+c=0;④4a+b=0;⑤當(dāng)y=2時(shí),x只能等于0.其中正確的是( )
A. ①④ B. ③④ C. ②⑤ D. ③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對(duì)稱軸是直線x=1.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)D(n,y1),E(3,y2)在拋物線上,若y1<y2,請(qǐng)直接寫出n的取值范圍;
(3)設(shè)點(diǎn)M(p,q)為拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)﹣1<p<2時(shí),點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)都在直線y=kx﹣4的上方,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,為的中點(diǎn).的半徑為3,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿方向以每秒1個(gè)單位的速度向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)當(dāng)以為半徑的與相切時(shí),求的值;
(2)探究:在線段上是否存在點(diǎn),使得與直線相切,且與相外切?若存在,求出此時(shí)的值及相應(yīng)的的半徑;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解江城中學(xué)學(xué)生的身高情況,隨機(jī)對(duì)該校男生、女生的身高進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成如圖所示的統(tǒng)計(jì)圖表.
組別 | 身高(cm) |
A | x<150 |
B | 150≤x<155 |
C | 155≤x<160 |
D | 160≤x<165 |
E | x≥165 |
根據(jù)圖表中提供的信息,回答下列問題:
(1)在樣本中,男生身高的中位數(shù)落在________組(填組別序號(hào)),女生身高在B組的人數(shù)有________人;
(2)在樣本中,身高在150≤x<155之間的人數(shù)共有________人,身高人數(shù)最多的在________組(填組別序號(hào));
(3)已知該校共有男生500人、女生480人,請(qǐng)估計(jì)身高在155≤x<165之間的學(xué)生有多少人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx﹣3經(jīng)過點(diǎn)A(1,0),頂點(diǎn)為點(diǎn)M.
(1)求拋物線的表達(dá)式及頂點(diǎn)M的坐標(biāo);
(2)求∠OAM的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=2cm,∠ABC=60°.若動(dòng)點(diǎn)P以2cm/s的速度從B點(diǎn)出發(fā)沿著B→A的方向運(yùn)動(dòng),點(diǎn)Q以1cm/s的速度從A點(diǎn)出發(fā)沿著A→C的方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)△APQ是直角三角形時(shí),t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系xOy,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)(4,4),請(qǐng)解答下列問題:
(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1、B1、C1的坐標(biāo);
(2)將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2,并求出點(diǎn)A到A2的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格紙(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形)中建立平面直角坐標(biāo)系,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4),請(qǐng)解答下列問題:
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)B1的坐標(biāo);
(2)畫出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2;
(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過的路徑長(zhǎng)(結(jié)果保留根號(hào)和x)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com