【題目】如圖,半徑為10的⊙中,弦,所對的圓心角分別是,,若,,則弦的長等于( )
A. 18B. 16C. 10D. 8
【答案】B
【解析】
作AH⊥BC于H,作直徑CF,連結(jié)BF,先利用等角的補角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據(jù)垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據(jù)三角形中位線性質(zhì)得到AH=BF=3,再利用勾股定理,可求得BH的長,繼而求得答案.
作AH⊥BC于H,作直徑CF,連結(jié)BF,如圖,
∵∠BAC+∠EAD=180°,
而∠BAC+∠BAF=180°,
∴∠DAE=∠BAF,
∴弧長DE=弧長BF,
∴DE=BF=12,
∵AH⊥BC,
∴CH=BH,
∵CA=AF,
∴AH為△CBF的中位線,
∴AH=BF=6.
∴BH===8,
∴BC=2BH=16.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標(biāo)為.
A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在綜合實踐活動中對本地的一座古塔進行了測量.如圖,他在山坡坡腳P處測得古塔頂端M的仰角為,沿山坡向上走25m到達D處,測得古塔頂端M的仰角為.已知山坡坡度,即,請你幫助小明計算古塔的高度ME.(結(jié)果精確到0.1m,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a為10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為45m2的花圃,AB的長是多少米?
(3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實踐操作
如圖,是直角三角形,,利用直尺和圓規(guī)按下列要求作圖,并在圖中表明相應(yīng)的字母.(保留作圖痕跡,不寫作法)
(1)①作的平分線,交于點;②以為圓心,為半徑作圓.
綜合運用
在你所作的圖中,
(2)與⊙的位置關(guān)系是 ;(直接寫出答案)
(3)若,,求⊙的半徑.
(4)在(3)的條件下,求以為軸把△ABC旋轉(zhuǎn)一周得到的圓錐的側(cè)面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△A′B′C,M是BC的中點,P是A′B′的中點,連接PM,若BC=2,∠BAC=30°,則線段PM的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已矩形ABCD的頂點A、D分別在x軸、y軸上,,則C點坐標(biāo)為( )
A. B. C. (3,5)D. (4,7)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com