如圖,拋物線與x軸交于點A(2,0),交y軸于點B(0,)直線y=kx過點A與y軸交于點C與拋物線的另一個交點是D。

⑴求拋物線與直線y=kx的解析式;

⑵設(shè)點P是直線AD上方的拋物線上一動點(不與點A、D重合),過點P作 y軸的平行線,交直線AD于點M,作DE⊥y軸于點E.探究:是否存在這樣的點P,使四邊形PMEC是平行四邊形,若存在請求出點P的坐標(biāo),若不存在,請說明理由;

⑶在⑵的條件下,作PN⊥AD于點N,設(shè)△PMN的周長為,點P的橫坐標(biāo)為x,求與x的函數(shù)關(guān)系式,并求出的最大值.

 解:⑴∵經(jīng)過點A(2,0)和B(0,)

∴由此得:         解得:

∴拋物線的解析式是∵直線y=kx經(jīng)過點A(2,0)

∴2k=0   解得:k=

∴直線的解析式是

⑵設(shè)P的坐標(biāo)是(),則M的坐標(biāo)是(x,)

∴PM=()-()=  ……4分

解方程組    解得:   

∵點D在第三象限,則點D的坐標(biāo)是(-8,

得點C的坐標(biāo)是(0,)

∴CE=-()=6 由于PM∥y軸,要使四邊形PMEC是平行四邊形,必有PM=CE,

=6          

 解這個方程得:x1=-2,x2=-4      符合-8<x<2

當(dāng)x1=-2時,

當(dāng)x1=-4時,

因此,直線AD上方的拋物線上存在這樣的點P,使四邊形PMEC是平行四邊形,點P的坐標(biāo)是(-2,3)和(-4,)

⑶在Rt△CDE中,DE=8,CE=6

由勾股定理得:DC=

∴△CDE的周長是24

∵PM∥y軸,容易證明△PMN∽△CDE

,   即

化簡整理得:與x的函數(shù)關(guān)系式是:

,∴有最大值

當(dāng)x=-3時,的最大值是15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點,與y軸交于點C(0,-3),設(shè)拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標(biāo);
(2)以B、C、D為頂點的三角形是直角三角形嗎?為什么?
(3)探究坐標(biāo)軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請指出符合條件的點P的位置,并直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點,且x1<x2,與y軸交于點C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個根.
(1)求拋物線的解析式;
(2)點M是線段AB上的一個動點,過點M作MN∥BC,交AC于點N,連接CM,當(dāng)△CMN的面積最大時,求點M的坐標(biāo);
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點,與y軸交于C(0,3),M是拋物線對稱軸上的任意一點,則△AMC的周長最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與y軸交于點A(0,4),與x軸交于B、C兩點.其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點D,使△BCD為直角三角形.若存在,求所有D點坐標(biāo);反之說理;
(3)點P為x軸上方的拋物線上的一個動點(A點除外),連PA、PC,若設(shè)△PAC的面積為S,P點橫坐標(biāo)為t,則S在何范圍內(nèi)時,相應(yīng)的點P有且只有1個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸交于A、B(6,0)兩點,且對稱軸為直線x=2,與y軸交于點C(0,-4).
(1)求拋物線的解析式;
(2)點M是拋物線對稱軸上的一個動點,連接MA、MC,當(dāng)△MAC的周長最小時,求點M的坐標(biāo);
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點F的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案