【題目】菱形ABCD的一條對角線長為6,邊AB的長是方程x2﹣7x+12=0的一個根,則菱形ABCD的周長為( 。

A. 16 B. 12 C. 1612 D. 24

【答案】A

【解析】分析:先利用因式分解法解方程得到x1=3,x2=4,再根據(jù)菱形的性質(zhì)可確定邊AB的長是4,然后計算菱形的周長.

詳解:(x-3)(x-4)=0,

x-3=0x-4=0,

所以x1=3,x2=4,

∵菱形ABCD的一條對角線長為6,

∴邊AB的長是4,

∴菱形ABCD的周長為16.

故選:A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校體育組對本校九年級全體同學體育測試情況進行調(diào)查,他們隨機抽查部分同學體育測試成績(由高到低分為四個等級),根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.請根據(jù)以下不完整的統(tǒng)計圖提供的信息,解答下列問題:

⑴該課題研究小組共抽查了 名同學的體育測試成績,扇形統(tǒng)計圖中級所占的百分比 = ;

⑵補全條形統(tǒng)計圖;

⑶若該校九年級共有300名同學,請估計該校九年級同學體育測試達標(測試成績級以上,含級)共多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.

(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.

①求證:△OCP∽△PDA;

②若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)若圖1中的點P恰好是CD邊的中點,求∠OAB的度數(shù);

(3)如圖2,在(1)的條件下,擦去折痕AO,線段OP,連結(jié)BP,動點M在線段AP⊥(點M與點F、A不重合),動點N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點F,作ME⊥BP于點E.試問當點M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;說明理由;若不變,求出線段EF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.

(1)請直接寫出第5節(jié)套管的長度;

(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形,對角線AC、BD交于點O,E是BC的中點,以下說法錯誤的是( 。

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為豐富學生的校園生活,準備從體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需490元,購買2個足球和5個籃球共需730元.

(1)求購買一個足球、一個籃球各需多少元?

(2)根據(jù)該中學的實際情況,需從軍躍體育用品商店一次性購買足球和籃球共80個,要求購買足球和籃球的總費用不超過7810元.這所中學最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,解答下列問題:3+32+33+34+…+32017的末位數(shù)字是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(8分)如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別是A(-3,2),B(-1,4),C(0,2).

(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;

(2)平移△ABC,若A的對應(yīng)點A2的坐標為(-5,-2),畫出平移后的△A2B2C2;

(3)若將△A2B2C2繞某一點旋轉(zhuǎn)可以得到△A1B1C,請直接寫出旋轉(zhuǎn)中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OE⊥AB于點O,OF⊥CD于點O,下列結(jié)論:

①∠EOF的余角有∠EOC和∠BOF;

②∠EOF=∠AOC=∠BOD;

③∠AOC與∠BOF互為余角;

④∠EOF與∠AOD互為補角.其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案