【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-1,1),B(-3,1),C(-1,4).

1)畫出△ABC關(guān)于y軸對(duì)稱的圖形;

2)將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A2BC2,請(qǐng)?jiān)趫D中畫出△A2BC2,并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留

【答案】1)如圖;(2)如圖,線段BC旋轉(zhuǎn)過程中所掃過得面積S==.

【解析】試題分析:(1)、關(guān)于y軸對(duì)稱的兩點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變,根據(jù)對(duì)稱法則得出各點(diǎn)的對(duì)應(yīng)點(diǎn),然后得出三角形;(2)、根據(jù)旋轉(zhuǎn)圖形的性質(zhì)得出各點(diǎn)的對(duì)應(yīng)點(diǎn),然后順次連接,得到三角形.首先得出半徑和旋轉(zhuǎn)的角度,然后根據(jù)扇形的面積計(jì)算法則得出答案.

試題解析:(1)、如圖所示,畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;

(2)、如圖所示,畫出△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A2BC2,

線段BC旋轉(zhuǎn)過程中所掃過得面積S==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的弦,OPOA交AB于點(diǎn)P,過點(diǎn)B的直線交OP的延長(zhǎng)線于點(diǎn)C,且CP=CB.

(1)求證:BC是O的切線;

(2)若O的半徑為3,OP=1,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)分別在的邊上運(yùn)動(dòng)(不與點(diǎn)重合),的平分線,的延長(zhǎng)線交角的平分線于點(diǎn).

1)若,求的度數(shù).

2)若,求的度數(shù).

3)若,請(qǐng)用含的代數(shù)式表示的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三個(gè)頂點(diǎn)的坐標(biāo)分別為,,,

1)若將△ABC 向右平移三個(gè)單位長(zhǎng)度得到△A1B1C1,則點(diǎn) A1 的坐標(biāo)為________

2)若△ABC 與△A2B2C2 關(guān)于原點(diǎn) O 成中心對(duì)稱,則點(diǎn) A2 的坐標(biāo)________;

3)畫出△ABC 繞原點(diǎn) O 順時(shí)針旋轉(zhuǎn) 90°后的對(duì)應(yīng)圖形△A3B3C3,并寫出 A3 的坐標(biāo)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商城銷售A,B兩種自行車.A型自行車售價(jià)為2 100/輛,B型自行車售價(jià)為1 750/輛,每輛A型自行車的進(jìn)價(jià)比每輛B型自行車的進(jìn)價(jià)多400元,商城用80 000元購(gòu)進(jìn)A型自行車的數(shù)量與用64 000元購(gòu)進(jìn)B型自行車的數(shù)量相等.

(1)求每輛A,B兩種自行車的進(jìn)價(jià)分別是多少?

(2)現(xiàn)在商城準(zhǔn)備一次購(gòu)進(jìn)這兩種自行車共100輛,設(shè)購(gòu)進(jìn)A型自行車m輛,這100輛自行車的銷售總利潤(rùn)為y元,要求購(gòu)進(jìn)B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤(rùn)不低于13 000元,求獲利最大的方案以及最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AOBC,垂足為點(diǎn)O,OAC相切于點(diǎn)DBEABAC的延長(zhǎng)線于點(diǎn)E,與O相交于G,F兩點(diǎn).

(1)求證:ABO相切;

(2)AB4,求線段GF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校準(zhǔn)備組織七年級(jí)400名學(xué)生參加北京夏令營(yíng),已知用3輛小客車和1輛大客車每次可運(yùn)送學(xué)生105人;用1輛小客車和2輛大客車每次可運(yùn)送學(xué)生110人;

1)每輛小客車和每輛大客車各能坐多少名學(xué)生?

2)若學(xué)校計(jì)劃租用小客車x輛,大客車y輛,一次送完,且恰好每輛車都坐滿;

請(qǐng)你設(shè)計(jì)出所有的租車方案;

若小客車每輛需租金4000元,大客車每輛需租金7600元,請(qǐng)選出最省錢的租車方案,并求出最少租金.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“中華人民共和國(guó)道路交通管理?xiàng)l例”規(guī)定:小汽車在城街路上行駛速度不得超過70千米小時(shí),如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路面對(duì)車速檢測(cè)儀A的正前方60米處的C點(diǎn),過了5秒后,測(cè)得小汽車所在的B點(diǎn)與車速檢測(cè)儀A之間的距離為100米.

BC間的距離;這輛小汽車超速了嗎?請(qǐng)說明理由.

【答案】這輛小汽車沒有超速.

【解析】

(1)根據(jù)勾股定理求出BC的長(zhǎng);
(2)直接求出小汽車的時(shí)速,進(jìn)行比較得出答案.

(1)RtABC中,AC60 m,

AB100 m,且AB為斜邊,根據(jù)勾股定理,得BC80 m.

(2)這輛小汽車沒有超速.

理由:∵80÷516(m/s),

16 m/s57.6 km/h,57.6<70,

∴這輛小汽車沒有超速.

【點(diǎn)睛】

考查勾股定理的應(yīng)用,熟練掌握勾股定理是解題的關(guān)鍵.

型】解答
結(jié)束】
19

【題目】已知:如圖,線段ACBD相交于點(diǎn)G,連接AB,CD,ECD上一點(diǎn),FDG上一點(diǎn),,且

求證:;,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),y軸交于點(diǎn)C點(diǎn)P為拋物線上一動(dòng)點(diǎn)過點(diǎn)PPQBC交拋物線于點(diǎn)Q,P、Q兩點(diǎn)之間的距離為m

1)求直線BC的解析式;

2)取線段BC的中點(diǎn)M,連接PM.當(dāng)m最小時(shí),判斷以點(diǎn)P、O、M、B為頂點(diǎn)的四邊形是什么特殊的平行四邊形,并說明理由;

3設(shè)Ny軸上一點(diǎn),在(2)的基礎(chǔ)上,當(dāng)OBN2∠OBP時(shí),求點(diǎn)N的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊(cè)答案