【題目】在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,若AB=4,BD=10,sin∠BDC= ,則ABCD的面積是 .
【答案】24
【解析】解:作OE⊥CD于E,如圖所示: ∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD= BD=5,CD=AB=4,
∵sin∠BDC= = ,
∴OE=3,
∴DE= =4,
∵CD=4,
∴點(diǎn)E與點(diǎn)C重合,
∴AC⊥CD,OC=3,
∴AC=2OC=6,
∴ABCD的面積=CDAC=4×6=24;
所以答案是:24.
【考點(diǎn)精析】關(guān)于本題考查的平行四邊形的性質(zhì)和解直角三角形,需要了解平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年9月10日,鄭徐高鐵正式運(yùn)營(yíng).從徐州到鄭州全程約360km,高鐵開通后,運(yùn)行時(shí)間比特快列車所用的時(shí)間減少了2.1小時(shí).若高鐵列車的平均速度是特快列車平均速度的2.4倍,求特快列車的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,隧道的截面由半圓和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)BC為8m,寬AB為1m,該隧道內(nèi)設(shè)雙向行駛的車道(共有2條車道),若現(xiàn)有一輛貨運(yùn)卡車高4m,寬2.3m。則這輛貨運(yùn)卡車能否通過(guò)該隧道?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,已知點(diǎn)C在線段AB上,且AC=5cm,BC=3cm,點(diǎn)M,N分別是AC,BC的中點(diǎn),求線段MN的長(zhǎng)度.
(2)若點(diǎn)C是線段AB上任意一點(diǎn),且AC=a,BC=b, 點(diǎn)M、N分別是,AC,BC的中點(diǎn),請(qǐng)直接寫出線段MN的長(zhǎng)度(用含a,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一個(gè)直角三角板中30°的銳角頂點(diǎn)與另一個(gè)直角三角板的直角頂點(diǎn)疊放一起.(注:∠ACB與∠DEC是直角,∠A=45°,∠DEC=30°).
(1)如圖①,若點(diǎn)C、B、D在一條直線上,求∠ACE的度數(shù);
(2)如圖②,將直角三角板CDE繞點(diǎn)c逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若恰好平分∠DCE,求∠BCD的度數(shù);
(3)如圖③若∠DEC始終在∠ACB的內(nèi)部,分別作射線CM平分∠BCD,射線CN平分∠ACE.如果三角板DCE在∠ACB內(nèi)繞點(diǎn)C任意轉(zhuǎn)動(dòng),∠MCN的度數(shù)是否發(fā)生變化?如果不變,求出它的度數(shù),如果變化,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC的平分線交△ABC的外接圓于點(diǎn)D,∠ABC的平分線交AD于點(diǎn)E,
(1)求證:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△DBE中,BC=BE,還需要添加兩個(gè)條件才能使△ABC≌△DBE,則不能添加的一組條件是( )
A. AC=DE,∠C=∠E B. BD=AB,AC=DE C. AB=DB,∠A=∠D D. ∠C=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將含45°角的三角板的直角頂點(diǎn)R放在直線l上,分別過(guò)兩銳角的頂點(diǎn)M,N作l的垂線,垂足分別為P、Q,
(1)如圖1,觀察圖1可知:與NQ相等的線段是 , 與∠NPQ相等的角是 .
(2)直角△ABC中,∠B=90°,在AB邊上任取一點(diǎn)D,連接CD,分別以AC,DC為邊作正方形ACEF和正方形CDGH,如圖2,過(guò)E,H分別作BC所在直線的垂線,垂足分別為K,L.試探究EK與HL之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)直角△ABC中,∠B=90°,在AB邊上任取一點(diǎn)D,連接CD,分別以AC,DC為邊作矩形ACEF和矩形CDGH,連接EH交BC所在的直線于點(diǎn)T,如圖3,如果AC=kCE,CD=kCH,試探究TE與TH之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列各題:
(1)如圖,已知直線AB與⊙O相切于點(diǎn)C,且AC=BC,求證:OA=OB.
(2)如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,∠AOD=120°,AB=3,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com