【題目】《九章算術》“勾股”章有一題:“今有戶高多于廣六尺,兩隅相去適一丈,問戶高、廣各幾何?”大意是說:已知矩形門的高比寬多6尺,門的對角線長1丈,那么門的高和寬各是多少?(1丈=10尺),如果設門的寬為x尺,那么這個門的高為(x+6)尺,根據(jù)題意得方程:_____

【答案】x2+6x﹣32=0

【解析】

直接利用勾股定理進而得出等式方程即可

設門的寬為x那么這個門的高為(x+6)尺,根據(jù)題意得方程

x2+x+62=100

整理得x2+6x32=0

故答案為:x2+6x32=0

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若a,b為有理數(shù),a>0,b<0,且|a|<|b|,則a,b,-a,︱b︱的大小關系是( )
A.b<-a<︱b︱<a
B.b<-a<a<︱b︱
C.b<︱b︱<-a<a
D.-a<︱b︱<b<a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明鍛煉健身,從A地勻速步行到B地用時25分鐘若返回時,發(fā)現(xiàn)走一小路可使A、B兩地間路程縮短200米,便抄小路以原速返回,結(jié)果比去時少用25分鐘

1求返回時A、B兩地間的路程;

2若小明從A地步行到B地后,以跑步形式繼續(xù)前進到C地整個鍛煉過程不休息).據(jù)測試,在他整個鍛煉過程的前30分鐘含第30分鐘,步行平均每分鐘消耗熱量6卡路里,跑步平均每分鐘消耗熱量10卡路里;鍛煉超過30分鐘后,每多跑步1分鐘,多跑的總時間內(nèi)平均每分鐘消耗的熱量就增加1卡路里測試結(jié)果,在整個鍛煉過程中小明共消耗904卡路里熱量小明從A地到C地共鍛煉多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點PAOB的角平分線OC上一點,分別連接AP、BP,若再添加一個條件即可判定AOP≌△BPO,則一下條件中:A=B;APO=BPOAPC=BPC; ④AP=BP;⑤OA=OB.其中一定正確的是 (只需填序號即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點B,EC,F在一條直線上,ACDE,A=DAB=DF

1)試說明:ABC≌△DFE;

2)若BF=13,EC=7,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3a(﹣2a)2=(
A.﹣12a3
B.﹣6a2
C.12a3
D.6a2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在C′處,BC′AD于點E

1)試判斷BDE的形狀,并說明理由;

2)若AB=4AD=8,求BDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景如圖,在四邊形ADBC中,∠ACB∠ADB90°,ADBD探究線段AC、BC、CD之間的數(shù)量關系.

小吳同學探究此問題的思路是:將ΔBCD繞點D逆時針旋轉(zhuǎn)90°到ΔAED處,點B、C分別落在點A、E處如圖),易證點C、A、E在同一條直線上,并且ΔCDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD.

  圖①      圖②        圖④

簡單應用:

(1)在圖①中,若AC=,BC2,則CD .

2如圖,AB是⊙O的直徑,點C、D在⊙O上,弧AD=弧BD,若AB=13,BC12,求CD的長.

拓展延伸:

(3)如圖∠ACB∠ADB90°,ADBD,ACm,BCnm<n,求CD的長(用含m,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式從左到右的變形中,是因式分解的為( 。

A. ab+ac+dab+c)+dB. x+2)(x2)=x24

C. 6ab2a3bD. x28x+16=(x42

查看答案和解析>>

同步練習冊答案