【題目】問(wèn)題背景:如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC、BC、CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問(wèn)題的思路是:將ΔBCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°到ΔAED處,點(diǎn)B、C分別落在點(diǎn)A、E處(如圖②),易證點(diǎn)C、A、E在同一條直線上,并且ΔCDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD.
圖① 圖② 圖③ 圖④
簡(jiǎn)單應(yīng)用:
(1)在圖①中,若AC=,BC=2,則CD= .
(2)如圖③,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,弧AD=弧BD,若AB=13,BC=12,求CD的長(zhǎng).
拓展延伸:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(zhǎng)(用含m,n的代數(shù)式表示).
【答案】(1) 3; (2)CD= ; (3) CD=.
【解析】試題分析:(1)由題意可知:AC+BC=CD,所以將AC與BC的長(zhǎng)度代入即可得出CD的長(zhǎng)度;
(2)連接AC、BD、AD即可將問(wèn)題轉(zhuǎn)化為第(1)問(wèn)的問(wèn)題,利用題目所給出的證明思路即可求出CD的長(zhǎng)度;
(3)以AB為直徑作⊙O,連接OD并延長(zhǎng)交⊙O于點(diǎn)D1,由(2)問(wèn)題可知:AC+BC=CD1;又因?yàn)?/span>CD1=D1D,所以利用勾股定理即可求出CD的長(zhǎng)度.
試題解析:(1)由題意知:AC+BC=CD,∴+2=CD, ∴CD=3;
(2)如圖3,連接AC、BD、AD,
∵AB是⊙O的直徑,∴∠ADB=∠ACB=90,
∵AD=BD,∴AD=BD,
∵AB=13,BC=12,∴由勾股定理得:AC=5,
由圖1得:AC+BC=CD,5+12=CD,∴CD= .
(3)解法一:以AB為直徑作⊙O,連接DO并延長(zhǎng)交⊙O于點(diǎn)D1,
連接D1A、D1B、D1C、CD,如圖4,
由(2)得:AC+BC=D1C,∴D1C=2,
∵D1D是⊙O的直徑,∴∠D1CD=90,
∵AC=m,BC=n,∴由勾股定理可求得:AB2=m2+n2,∴D1D2=AB2=m2+n2,
∵D1C2+DC2=D1D2,∴CD2=m2+n2=,
∵m<n,∴CD=;
解法二:如圖5,∵∠ACB=∠DB=90,
∴A、B. C.D在以AB為直徑的圓上,∴∠DAC=∠DBC,
將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90到△AED處,點(diǎn)B,C分別落在點(diǎn)A,E處,
∴△BCD≌△AED,∴CD=ED,∠ADC=∠ADE,
∴∠ADC∠ADC=∠ADE∠ADC,
即∠ADB=∠CDE=90,∴△CDE是等腰直角三角形,所以CE=CD,
∵AC=m,BC=n=AE,∴CE=nm,∴CD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別是△ABC的三邊長(zhǎng),且滿足a2+b2+c2=ab+bc+ac,則△ABC是( )
A. 等腰三角形B. 等邊三角形
C. 直角三角形D. 等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺,兩隅相去適一丈,問(wèn)戶高、廣各幾何?”大意是說(shuō):已知矩形門的高比寬多6尺,門的對(duì)角線長(zhǎng)1丈,那么門的高和寬各是多少?(1丈=10尺),如果設(shè)門的寬為x尺,那么這個(gè)門的高為(x+6)尺,根據(jù)題意得方程:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,AB=BC=8cm,∠ABC=90°,點(diǎn)E以每秒1cm/s的速度由A向點(diǎn)B運(yùn)動(dòng),ED⊥AC于點(diǎn)D,點(diǎn)M為EC的中點(diǎn).
(1)求證:△BMD為等腰直角三角形;
(2)當(dāng)點(diǎn)E運(yùn)動(dòng)多少秒時(shí),△BMD的面積為12.5cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M(4,0),以點(diǎn)M為圓心、2為半徑的圓與x軸交于點(diǎn)A、B.已知拋物線 過(guò)點(diǎn)A和B,與y軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo),并畫出拋物線的大致圖象.
(2)點(diǎn)Q(8,m)在拋物線上,點(diǎn)P為此拋物線對(duì)稱軸上一個(gè)動(dòng)點(diǎn),求PQ+PB的最小值.
(3)CE是過(guò)點(diǎn)C的⊙M的切線,點(diǎn)E是切點(diǎn),求OE所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館擁有客房100間,經(jīng)營(yíng)中發(fā)現(xiàn):每天入住的客房數(shù)y(間)與房?jī)r(jià)x(元)(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對(duì)應(yīng)值如下表:
x(元) | 180 | 260 | 280 | 300 |
y(間) | 100 | 60 | 50 | 40 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)已知每間入住的客房,賓館每日需支出各種費(fèi)用100元;每間空置的客房,賓館每日需支出各種費(fèi)用60元.當(dāng)房?jī)r(jià)為多少元時(shí),賓館當(dāng)日利潤(rùn)最大?求出最大利潤(rùn).(賓館當(dāng)日利潤(rùn)=當(dāng)日房費(fèi)收入-當(dāng)日支出)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A.兩個(gè)數(shù)的差一定小于被減數(shù)
B.若兩數(shù)的差為0,則這兩數(shù)必相等
C.兩個(gè)相反數(shù)相減必為0
D.若兩數(shù)的差為正數(shù),則此兩數(shù)都是正數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com