【題目】己知:在等腰三角形ABC中,AB=AC,AD⊥BC于點D,以AC為邊作等邊三角形ACE,直線BE交直線AD于點F,連接FC.
(1)如圖1,120°<∠BAC<180°,△ACE與△ABC在直線AC的異側,且FC交AE于點M.
①求證:∠FEA=∠FCA;
②猜想線段FE,FA,FD之間的數量關系,并證明你的結論:
(2)當60°<∠BAC<120°,且△ACE與△ABC在直線AC的同側時,利用圖2畫出圖形探究線段FE,FA,FD之間的數量關系,并直接寫出你的結論.
【答案】
(1)
解:①∵AD⊥BC,AB=AC,
∴BD=DC,
∴FB=FC,
∴∠FBC=∠FCB,
∴AB=AC,
∴∠ABC=∠ACB,
∵∠FBA=∠FCA,
∵以AC為邊作等邊三角形ACE,
∴AE=AC=AB,
∴∠ABF=∠AEF,
∴∠ACF=∠AEF,
即:∠FEA=∠FCA;
②結論:EF=FA+AD,
∵以AC為邊作等邊三角形ACE,
∴∠EAC=60°,
由①有,∠ACF=∠AEF,
∴∠EFC=∠EAC=60°,
由①得,BF=CF,FD⊥BC,
∴∠BFD=∠CFD,
∵∠BFD+∠CFD+∠EFC=180°,
∴∠BFD=∠CFD= =60°,
∴∠FCD=90°﹣∠CFD=30°,
∴∠ACD+∠ACF=30°,
∴∠ECF=∠ECA﹣∠ACF=60°﹣∠ACF=60°﹣(30°﹣∠ACD)=30°+∠ACD,
如圖1,
延長AD,在AD上截取AD=DK,連接CK,
∵AD⊥BC,
∴∠ACD=∠KCD,CA=CK
∴∠FCK=∠FCD+∠KCD=∠ACF+∠ACD+∠KCD=30°+∠KCD=30°+∠ACD,
∴∠FCK=∠ECF,
∵AC=CE,AC=CK,
∴CK=CE,
在△CFE和△CFK中, ,
∴△CFE≌△CFK,
∴FE=FK=FD+DK,
∵AD=DK,
∴FE=FD+AD;
(2)
解:結論:EF=FA+AD,
如圖2,
∵以AC為邊作等邊三角形ACE,
∴∠EAC=60°,
同(2)①的方法有,∠ACF=∠AEF,
∴∠EFC=∠EAC=60°,
同(2)①方法得,BF=CF,FD⊥BC,
∴∠BFD=∠CFD,
∵∠BFD+∠CFD+∠EFC=180°,
∴∠BFD=∠CFD= =60°,
∴∠FCD=90°﹣∠CFD=30°,
∴∠ACD﹣∠ACF=30°,
∴∠ECF=∠ECA+∠ACF=60°+∠ACF=60°+(∠ACD﹣30°)=30°+∠ACD,
延長AD,在AD上截取AD=DK,連接CK,
∵AD⊥BC,
∴∠ACD=∠KCD,CA=CK
∴∠FCK=∠FCD+∠KCD=∠ACD﹣∠ACF+∠KCD=30°+∠KCD=30°+∠ACD,
∴∠FCK=∠ECF,
∵AC=CE,AC=CK,
∴CK=CE,
在△CFE和△CFK中, ,
∴△CFE≌△CFK,
∴FE=FK=FD+DK,
∵AD=DK,
∴FE=FD+AD;
【解析】(1)①利用中垂線得到∠FBC=∠FCB,從而得到∠FBA=∠FCA,再由等邊三角形的性質得到∠ABF=∠AEF即可;②先得到∠EFC=∠EAC=60°,從而判斷出∠ACD+∠ACF=30°,進而得出∠FCK=∠ECF,判斷出△CFE≌△CFK,即可;(2)先得到∠EFC=∠EAC=60°,從而判斷出∠ACD﹣∠ACF=30°,進而得出∠FCK=∠ECF,判斷出△CFE≌△CFK,即可;
【考點精析】關于本題考查的三角形三邊關系,需要了解三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】
(1)如圖1,點P是ABCD內的一點,分別過點B、C、D作AP的垂線BE、CF、DH,垂足分別為E、F、H,猜想BE、CF、DH三者之間的關系,并證明;
(2)如圖2,若點P在ABCD的外部,△APB的面積為18,△APD的面積為3,求△APC的面積;
(3)如圖3,在(2)的條件下,增加條件:AB=BC,∠APC=ABC=90°,設AP、BP分別于CD相交于點M、N,當DM=CN時, =(請直接寫出結論).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4cm,面積是12cm2 , 腰AB的垂直平分線EF交AC于點F,若D為BC邊上的中點,M為線段EF上一動點,則△BDM的周長最短為cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,AC=BC,∠ACB=90°,點D,E分別在AB,BC上,且AD=BE,BD=AC.
(1)如圖1,連DE,求∠BDE的度數;
(2)如圖2,過E作EF⊥AB于F,求證:∠FED=∠CED;
(3)在(2)的條件下,若BF=2,求CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數為( )
A. 115° B. 120° C. 130° D. 140°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BD交AC于點D,DE交AB于點E,∠EBD=∠EDB,∠ABC:∠A:∠C=2:3:7,∠BDC=60°,
(1)試計算∠BED的度數.
(2)ED∥BC嗎?試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經過平移后得到△A1B1C1,已知點C1的坐標為(4,0),寫出頂點A1,B1的坐標,并畫出△A1B1C1;
(2)若△ABC和△A2B2C2關于原點O成中心對稱圖形,寫出△A2B2C2的各頂點的坐標;
(3)將△ABC繞著點O按順時針方向旋轉90°得到△A3B3C3,寫出△A3B3C3的各頂點的坐標,并畫出△A3B3C3.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,若點P(m , m-n)與點Q(-2,3)關于原點對稱,則點M(m , n)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com