【題目】已知二次函數y=x2-(2m+1)x-3m.
(1)若m=2,則該函數的表達式為_____,求出函數圖象的對稱軸為_____.
(2)對于此函數,在-1≤x≤1的范圍內至少有x值使得y≥0,則m的取值范圍為____.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線C1:y=(x+)2,平移拋物線y=﹣x2,使其頂點D在拋物線C1位于y軸右側的圖象上,得到拋物線C2,拋物線C2交x軸于A、B兩點(點A在點B的左側),交y軸于點C,設點D的橫坐標為a.
(1)當OC=2時,求拋物線C2的解析式;
(2)在拋物線的C2的對稱軸上是否存在一點P,使得AP+CP的長最短?若存在,求出點P的坐標(用含a的代數式表示);若不存在,請說明理由;
(3)在(2)的條件下,連接OP,若OP⊥BC,求此時a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小紅玩抽卡片和旋轉盤游戲,有兩張正面分別標有數字1,﹣2的不透明卡片,背面完全相同;轉盤被平均分成3個相等的扇形,并分別標有數字﹣1,3,4(如圖所示),小云把卡片背面朝上洗勻后從中隨機抽出一張,記下卡片上的數字;然后轉動轉盤,轉盤停止后,記下指針所在區(qū)域的數字(若指針在分格線上,則重轉一次,直到指針指向某一區(qū)域為止).請用列表或樹狀圖的方法(只選其中一種)求出兩個數字之積為負數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經過點A(1,0),
B(3,2).
(1)求m的值和拋物線的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示A、B、C、D四點在⊙O上的位置,其中=180°,且=,=.若阿超在上取一點P,在上取一點Q,使得∠APQ=130°,則下列敘述何者正確( )
A. Q點在上,且>B. Q點在上,且<
C. Q點在上,且>D. Q點在上,且<
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將二次函數y=x2﹣5x﹣6在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象,若直線y=2x+b與這個新圖象有3個公共點,則b的值為( 。
A. ﹣或﹣12B. ﹣或2C. ﹣12或2D. ﹣或﹣12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過A(﹣3,0),B(1,0),C(0,3)三點.
(1)求拋物線的函數表達式;
(2)如圖1,P為拋物線上在第二象限內的一點,若△PAC面積為3,求點P的坐標;
(3)如圖2,D為拋物線的頂點,在線段AD上是否存在點M,使得以M,A,O為頂點的三角形與△ABC相似?若存在,求點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,∠DAF=300,M是CD上一點,AM的延長線交BC的延長線于點F,BE垂直平分AM,DG∥AF,MG∥DE.
(1)判斷四邊形DEMG的形狀,并說明理由;
(2)求證:△ADM≌△FCM.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2a與x軸交于點A和點B(1,0),與y軸將于點C(0,﹣).
(1)求拋物線的解析式;
(2)若點D(2,n)是拋物線上的一點,在y軸左側的拋物線上存在點T,使△TAD的面積等于△TBD的面積,求出所有滿足條件的點T的坐標;
(3)直線y=kx﹣k+2,與拋物線交于兩點P、Q,其中在點P在第一象限,點Q在第二象限,PA交y軸于點M,QA交y軸于點N,連接BM、BN,試判斷△BMN的形狀并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com