【題目】定義:

我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線

理解:

1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請(qǐng)你只用無(wú)刻度的直尺在網(wǎng)格中找到一點(diǎn)D,使四邊形ABCD是以AC相似對(duì)角線的四邊形(保留畫(huà)圖痕跡,找出3個(gè)即可);

2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對(duì)角線BD平分∠ABC

求證:BD是四邊形ABCD相似對(duì)角線

3)如圖3,已知FH是四邊形EFCH相似對(duì)角線∠EFH=∠HFG=30°,連接EG,若△EFG的面積為2,求FH的長(zhǎng).

【答案】1)見(jiàn)解析;(2)證明見(jiàn)解析;(3FH=2

【解析】

1)先求出AB,BCAC,再分情況求出CDAD,即可畫(huà)出圖形;

2)先判斷出∠A+∠ADB=140°=∠ADC,即可得出結(jié)論;

3)先判斷出△FEH∽△FHG,得出FH2=FEFG,再判斷出EQ=FE,繼而求出FGFE=8,即可得出結(jié)論.

1)由圖1知,AB=,BC=2∠ABC=90°,AC=5,

四邊形ABCD是以AC相似對(duì)角線的四邊形,

當(dāng)∠ACD=90°時(shí),△ACD∽△ABC△ACD∽△CBA

,

∴CD=10CD=2.5

同理:當(dāng)∠CAD=90°時(shí),AD=2.5AD=10,

2∵∠ABC=80°BD平分∠ABC,

∴∠ABD=∠DBC=40°

∴∠A+∠ADB=140°

∵∠ADC=140°,

∴∠BDC+∠ADB=140°,

∴∠A=∠BDC,

∴△ABD∽△BDC,

∴BD是四邊形ABCD相似對(duì)角線;

3)如圖3,

∵FH是四邊形EFGH相似對(duì)角線,

∴△EFH△HFG相似,

∵∠EFH=∠HFG,

∴△FEH∽△FHG

,

∴FH2=FEFG

過(guò)點(diǎn)EEQ⊥FGQ,

∴EQ=FEsin60°=FE,

FG×EQ=2

FG×FE=2,

∴FGFE=8,

∴FH2=FEFG=8,

∴FH=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.

(1)m的值;

(2)先作的圖象關(guān)于x軸的對(duì)稱(chēng)圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫(xiě)出變化后圖象的解析式;

(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售一種商品,成本價(jià)為20/千克,經(jīng)市場(chǎng)調(diào)查,每天銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元千克)之間的關(guān)系如圖所示,規(guī)定每千克售價(jià)不能低于30元,且不高于80元.

(1)直接寫(xiě)出yx之間的函數(shù)關(guān)系式;

(2)如果該超市銷(xiāo)售這種商品每天獲得3900元的利潤(rùn),那么該商品的銷(xiāo)售單價(jià)為多少元?

(3)設(shè)每天的總利潤(rùn)為w元,當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),該超市每天的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有長(zhǎng)為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長(zhǎng)度 a 10m)圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃的寬 AB xm,面積為 Sm2

1 S x 的函數(shù)關(guān)系式及 x 值的取值范圍;

2 要圍成面積為 45m2 的花圃,AB 的長(zhǎng)是多少米?

3 當(dāng) AB 的長(zhǎng)是多少米時(shí),圍成的花圃的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問(wèn)題越來(lái)越受到人們的關(guān)注,某校學(xué)生會(huì)為了解節(jié)能減排、垃圾分類(lèi)知識(shí)

的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為非常了解”“了解”“了解較少”“不了解四類(lèi),

并將檢查結(jié)果繪制成下面兩個(gè)統(tǒng)計(jì)圖.

(1)本次調(diào)查的學(xué)生共有__________人,估計(jì)該校1200 名學(xué)生中不了解的人數(shù)是__________人.

(2)非常了解的4 人有兩名男生, 兩名女生,若從中隨機(jī)抽取兩人向全校做環(huán)保交流,請(qǐng)利用畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程m2x2+(2m﹣1)x+1=0有兩個(gè)不相等的根a,b,

(1)求實(shí)數(shù)m的取值范圍;

(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)?如果存在求出m的值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C0,5),另拋物線經(jīng)過(guò)點(diǎn)(1,8),M為它的頂點(diǎn).

1)求拋物線的解析式;

2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸正半軸交于點(diǎn)A3,0).以OA為邊在軸上方作正方形OABC,延長(zhǎng)CB交拋物線于點(diǎn)D,再以BD為邊向上作正方形BDEF,則= ,點(diǎn)E的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘漁船位于碼頭M的南偏東45°方向,距離碼頭120海里的B處,漁船從B處沿正北方向航行一段距離后,到達(dá)位于碼頭北偏東60°方向的A處.

1)求漁船從BA的航行過(guò)程中與碼頭M之間的最小距離.

2)若漁船以20海里/小時(shí)的速度從A沿AM方向行駛,求漁船從A到達(dá)碼頭M的航行時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案