【題目】勾股定理是幾何中的一個重要定理.在我國古算書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗證勾股定理.圖2是由圖1放入矩形內(nèi)得到的,∠BAC=90°,AB=3,AC=4,點D,E,F(xiàn),G,H,I都在矩形KLMJ的邊上,則矩形KLMJ的面積為( )

A.90
B.100
C.110
D.121

【答案】C
【解析】解:如圖,延長AB交KF于點O,延長AC交GM于點P,
所以四邊形AOLP是正方形,
邊長AO=AB+AC=3+4=7,
所以KL=3+7=10,LM=4+7=11,
因此矩形KLMJ的面積為10×11=110.
故選:C.

延長AB交KF于點O,延長AC交GM于點P,可得四邊形AOLP是正方形,然后求出正方形的邊長,再求出矩形KLMJ的長與寬,然后根據(jù)矩形的面積公式列式計算即可得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是射線BM上的一個動點(P不與點B重合),∠AOB= 30°,∠ABM=60°.當(dāng)∠OAP=______時,以點A、O、B中的任意兩點和點P為頂點的三角形是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在CBD中,CD=BD,CDBD,BE平分CBA交CD于點F,CEBE垂足是E,CE與BD交于點A.求證:

(1)BF=AC;

(2)BE是AC的中垂線;

(3)若AD=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是老年活動中心門口放著的一個招牌,這個招牌是由三個特大號的骰子摞在一起而成的.每個骰子的六個面的點數(shù)分別是1到6,其中可以看見7個面,其余11個面是看不見的,則看不見的面上的點數(shù)總和是( )

A.41
B.40
C.39
D.38

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=(2m+3x+m-1

1)若函數(shù)圖象經(jīng)過原點,求m的值;

2)若函數(shù)圖象與y軸上的的交點位于原點上方,求m的取值范圍;

3)若函數(shù)圖象平行于直線y=x+1,求m的值;

4)若該函數(shù)的值y隨自變量x的增大而減小,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以點A為頂點作等腰RtABC,等腰RtADE,其中BAC=DAE=90°,如圖1所示放置,使得一直角邊重合,連接BD、CE

1)試判斷BDCE的數(shù)量關(guān)系,并說明理由;

2)延長BDCE于點F試求BFC的度數(shù);

3)把兩個等腰直角三角形按如圖2放置,(1)、(2)中的結(jié)論是否仍成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=15,AC=20,BC邊上高AD=12則BC的長為(

A. 25 B. 7 C. 25或7 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝六一兒童節(jié),某市中小學(xué)統(tǒng)一組織文藝匯演,甲、乙兩所學(xué)校共92人(其中甲校的人數(shù)多于乙校的人數(shù),且甲校的人數(shù)不足90人)準(zhǔn)備統(tǒng)一購買服裝參加演出;下面是某服裝廠給出的演出服裝的價格表

購買服裝的套數(shù)

1套至45

46套至90

91套以上

每套服裝的價格

60

50

40

(1)如果兩所學(xué)校分別單獨購買服裝一共應(yīng)付5000元,甲、乙兩所學(xué)校各有多少學(xué)生準(zhǔn)備參加演出?

(2)如果甲校有10名同學(xué)抽調(diào)去參加書法繪畫比賽不能參加演出,請你為兩所學(xué)校設(shè)計一種最省錢的購買服裝方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進(jìn)一步建設(shè)秀美、宜居的生態(tài)環(huán)境,某村欲購買甲、乙、丙三種樹美化村莊,已知甲、乙丙三種樹的價格之比為2:2:3,甲種樹每棵200元,現(xiàn)計劃用210000元資金,購買這三種樹共1000棵.
(1)求乙、丙兩種樹每棵各多少元?
(2)若購買甲種樹的棵樹是乙種樹的2倍,恰好用完計劃資金,求這三種樹各能購買多少棵?
(3)若又增加了10120元的購樹款,在購買總棵樹不變的前提下,求丙種樹最多可以購買多少棵?

查看答案和解析>>

同步練習(xí)冊答案