【題目】在等腰梯形ABCD中,ADBCAB=DC=5,AD=6BC=12

1)梯形ABCD的面積等于

2)如圖1,動點PD點出發(fā)沿DCDC以每秒1個單位的速度向終點C運動,動點QC點出發(fā)沿CB以每秒2個單位的速度向B點運動.兩點同時出發(fā),當P點到達C點時,Q點隨之停止運動.當PQAB時,P點離開D點多少時間?

3)如圖2,點K是線段AD上的點,M、N為邊BC上的點,BM=CN=5,連接AN、DM,分別交BK、CK于點E、F,記△ ADG和△ BKC重疊部分的面積為S,求S的最大值.

【答案】136;(2t=;(3

【解析】

1)已知梯形各邊的長,用勾股定理易求高以及其面積;

2)本題要找出線段之比,設要用x秒后PQAB,已知,求出x的值即可;

3)過GGH⊥BC,延長HGADI;過EEX⊥BC,延長XEADY;過FFU⊥BC,延長UFADW;利用相似三角形的性質(zhì)分別表示出EXFU的長,再利用得到相應的關系式,最后通過配方求得S的最大值即可.

解:(1)如圖,過點DDE⊥BC于點E,

ABDC5AD6,BC12

∴由題意可知CEBC-AD)=3,

Rt△DEC中,,

∴梯形ABCD的面積為,

故答案為:36

2)分別延長BACD,交于點N,

NANBADBC,即

NA5,則NDNA5

設用了xPQAB,則DPx,PC5x,CQ2x

PCCNCQCB,

,x

即當PQAB時,P點離開D點的時間等于秒;

3)過GGH⊥BC,延長HGADI;

EEX⊥BC,延長XEADY;

FFU⊥BC,延長UFADW;

AD∥BC

△MGN∽△DGA,

,

∴HG1

AKx,

AD∥BC,

△BEN∽△KEA

,

,

同理:

∴當x3時,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下表:

序號

1

2

3

圖形

我們把某格中字母和所得到的多項式稱為特征多項式,例如:

1格的特征多項式

2格的特征多項式

回答下列問題:

1)第3格的特征多項式________________,

4格的特征多項式______________________,

格的特征多項式___________________;

2)若第1格的特征多項式的值為,第2格的特征多項式的值為,求的值;

3)在(2)的條件下,第格的特征多項式的值為,則直接寫出的值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,C是⊙O上的一點(不與點A,B重合),過點CAB的垂線交⊙O于點D,垂足為E點.

1)如圖1,當AE=4,BE=2時,求CD的長度;

2)如圖2,連接AC,BD,點MBD的中點.求證:MEAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y/千克,y關于x的函數(shù)解析式為 且第12天的售價為32/千克,第26天的售價為25/千克.已知種植銷售藍莓的成木是18/千克,每天的利潤是W元(利潤=銷售收入﹣成本).

(1)m=   ,n=   ;

(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?

(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC=13,BC=10,點MAC邊上任意一點,連接MB,以MB、MC為鄰邊作平行四邊形MCNB,連接MN,則MN的最小值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某事業(yè)單位組織全體職工參加了抗擊疫情,服務社會的活動為了了解單位職工參加活動情況,從單位職工中隨機抽取部分職工進行調(diào)查,統(tǒng)計了該天他們打掃街道、去敬老院服務和社區(qū)文藝演出的人數(shù),并繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請根據(jù)兩幅統(tǒng)計圖中的信息,回答下列問題:

本次抽樣調(diào)查共抽取了多少名單位職工?

通過計算補全條形統(tǒng)計圖;

若該事業(yè)單位共有名職工,請你估計該單位去敬老院的職工有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=4,D為邊AB上一動點(B點除外),以CD為一邊作正方形CDEF,連接BE,則△BDE面積的最大值為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,要在底邊BC=160cm,高AD=120cm的△ABC鐵皮余料上,截取一個矩形EFGH,使點HAB上,點GAC上,點E,FBC上,ADHG于點M.

(1)設矩形EFGH的長HG=ycm,寬HE=xcm.求y與x的函數(shù)關系式;

(2)當x為何值時,矩形EFGH的面積S最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“某市為處理污水,需要鋪設一條長為4000米的管道,為了盡量減少施工對交通所造成的影響,實際施工時×××××.設原計劃每天鋪設管道x米,則可得方程.”根據(jù)此情境,題中用“×××××”表示得缺失的條件,應補為(  )

A.每天比原計劃多鋪設10米,結(jié)果延期20天才完成任務

B.每天比原計劃少鋪設10米,結(jié)果延期20天才完成任務

C.每天比原計劃多鋪設10米,結(jié)果提前20天完成任務

D.每天比原計劃少鋪設10米,結(jié)果提前20天完成任務

查看答案和解析>>

同步練習冊答案