【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請按要求完成下列各題:
(1)畫線段AD∥BC且使AD=BC,連接CD;
(2)線段AC的長為_______,CD的長為______,AD的長為________;
(3)四邊形ABCD的面積為________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC,BC分別與⊙O相交于點(diǎn)D,E,連接DE,現(xiàn)給出兩個(gè)命題: ①若AC=AB,則DE=CE;
②若∠C=45°,記△CDE的面積為S1 , 四邊形DABE的面積為S2 , 則S1=S2 ,
那么( )
A.①是真命題②是假命題
B.①是假命題②是真命題
C.①是假命題②是假命題
D.①是真命題②是真命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知, , ,試說明:BE∥CF.
完善下面的解答過程,并填寫理由或數(shù)學(xué)式:
解:∵ (已知)
∴AE∥ ( )
∴( 。
∵(已知)
∴ ( )
∴DC∥AB( )
∴( 。
即
∵(已知)
∴( 。
即
∴BE∥CF( 。 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=90°,以O為頂點(diǎn)、OB為一邊畫∠BOC,然后再分別畫出∠AOC與∠BOC的平分線OM、ON.
(1)在圖1中,射線OC在∠AOB的內(nèi)部.
①若銳角∠BOC=30°,則∠MON= °;
②若銳角∠BOC=n°,則∠MON= °.
(2)在圖2中,射線OC在∠AOB的外部,且∠BOC為任意銳角,求∠MON的度數(shù).
(3)在(2)中,“∠BOC為任意銳角”改為“∠BOC為任意鈍角”,其余條件不變,(圖3),求∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,點(diǎn)E、F分別在邊BC、CD上,且BE=DF=AD,聯(lián)結(jié)DE,聯(lián)結(jié)AF、BF分別與DE交于點(diǎn)G、P.
(1)求證:AB=BF;
(2)如果BE=2EC,求證:DG=GE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,點(diǎn)M是CE的中點(diǎn),連接BM.
(1)如圖①,點(diǎn)D在AB上,連接DM,并延長DM交BC于點(diǎn)N,可探究得出BD與BM的數(shù)量關(guān)系為______________;
(2)如圖②,點(diǎn)D不在AB上,(1)中的結(jié)論還成立嗎?如果成立,請證明;如果不成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班計(jì)劃購買籃球和排球若干個(gè),買4個(gè)籃球和3個(gè)排球需要410元;買2個(gè)籃球和5個(gè)排球需要310元.
(1)籃球和排球單價(jià)各是多少元?
(2)若兩種球共買30個(gè),費(fèi)用不超過1700元,籃球最多可以買多少個(gè)?
(3)如果購買這兩種球剛好用去520元,問有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為原點(diǎn),A,B為數(shù)軸上兩點(diǎn),AB=15,且OA:OB=2
(1)A,B對應(yīng)的數(shù)分別為 , .
(2)點(diǎn)A,B分別以2個(gè)單位/秒和5個(gè)單位/秒的速度相向而行,則幾秒后A,B相距1個(gè)單位長度?
(3)點(diǎn)AB以(2)中的速度同時(shí)向右運(yùn)動(dòng),點(diǎn)P從原點(diǎn)O以4個(gè)單位秒的速度向右運(yùn)動(dòng),是否存在常數(shù)m,使得3AP+2PB﹣mOP為定值?若存在,請求出m值以及這個(gè)定值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com