【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F,G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(2)若改變(1)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀(不必證明).
【答案】(1)四邊形EFGH是菱形,理由見解析;(2)四邊形EFGH是正方形,理由見解析
【解析】
(1)連接AC、BD,由PA=PB,PC=PD,∠APB=∠CPD易證△APC≌△BPD(SAS),
故可得到AC=BD,再利用三角形的中位線可得EF=AC、FG=BD,EH=BD,GH=AC,易證EF=FG=GH=EH,故四邊形EFGH是菱形;
(2)設(shè)AC、BD交點為O,AC與PD交于點M,AC與EH交于點N,
利用△APC≌△BPD,所以∠ACP=∠BDP,再根據(jù)∠CPD=90°故∠PDC+∠PCD=90°
易得∠ODC+∠OCD=90°,即∠COD=90°,即AC⊥BD,再利用中位線的性質(zhì)∠EHG=∠ENO=∠BOC=∠DOC=90°,即可得到四邊形EFGH是正方形.
(1)四邊形EFGH是菱形,
如圖,連接AC、BD,
∵∠APB=∠CPD,
∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,
在△APC和△BPD中,
,
∴△APC≌△BPD(SAS),
∴AC=BD,
∵點E、F、G分別為AB、BC、CD的中點,
∴EF=AC、FG=BD,EH=BD,GH=AC,
∴EF=FG=GH=EH,
∴四邊形EFGH是菱形;
(2)四邊形EFGH是正方形,
設(shè)AC、BD交點為O,AC與PD交于點M,AC與EH交于點N,
∵△APC≌△BPD,
∴∠ACP=∠BDP,
∵∠CPD=90°
∴∠PDC+∠PCD=90°
∴∠ODC+∠OCD=90°
∴∠COD=90°
∴AC⊥BD
∵EH∥BD、AC∥HG,
∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
∵四邊形EFGH是菱形,
∴四邊形EFGH是正方形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC=5,tan∠ABC=.
(1)求邊AC的長;
(2)設(shè)邊BC的垂直平分線與邊AB的交點為D,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是【 】
A.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則甲組數(shù)據(jù)比乙組數(shù)據(jù)大
B.從1,2,3,4,5,中隨機抽取一個數(shù),是偶數(shù)的可能性比較大
C.數(shù)據(jù)3,5,4,1,﹣2的中位數(shù)是3
D.若某種游戲活動的中獎率是30%,則參加這種活動10次必有3次中獎
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△OAB置于平面直角坐標系中,點A的坐標為(0,4),點B的坐標為(3,0),點P是Rt△OAB內(nèi)切圓的圓心.將Rt△OAB沿y軸的正方向作無滑動滾動.使它的三邊依次與x軸重合.第一次滾動后,圓心為P1,第二次滾動后圓心為P2…依次規(guī)律,第2019次滾動后,Rt△OAB內(nèi)切圓的圓心P2019的坐標是( )
A.(673,1)B.(674,1)C.(8076,1)D.(8077,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E,若BF=12,AB=10,則AE的長為( )
A.16 B.15 C.14 D.13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為評估九年級學(xué)生的學(xué)習(xí)成績狀況,以應(yīng)對即將到來的中考做好教學(xué)調(diào)整,某中學(xué)抽取了部分參加考試的學(xué)生的成績作為樣本分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列問題:
(1)求本中學(xué)成績類別為“中”的人數(shù);
(2)求出扇形圖中,“優(yōu)”所占的百分比,并將條形統(tǒng)計圖補充完整;
(3)該校九年級共有1000人參加了這次考試,請估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績達到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙O的直徑, D、T是圓上的兩點,且AT平分∠BAD,過點T作AD延長線的垂線PQ,垂足為C.
(1)求證:PQ是⊙O的切線;
(2)若⊙O的半徑為2,,求弦AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級上學(xué)期,我們探究了“設(shè)計制作長方體形狀的包裝紙盒”,今天我們繼續(xù)運用所學(xué)知識,解決“設(shè)計制作長方體形狀的包裝紙盒”中常見的問題.如圖1是一塊邊長為60cm 的正方形薄鐵片,現(xiàn)在用它來制作成如圖2的一個長方體盒子.
(1)如果要做成一個沒有蓋的長方體盒子,可先在薄鐵片的四個角上截去四個相同的小正方形,邊長為xcm, 然后把四邊折合起來.
①求做成的盒子底面積ycm2與截去小正方形邊長xcm之間的函數(shù)關(guān)系式;
②當做成的盒子的底面積為900cm2時,試求該盒子的容積.
(2)如果要做成一個有蓋的長方體盒子,其制作方案要求同時符合下列兩個條件:
①必須在薄鐵片的四個角上各截去一個四邊形(其余部分不能裁截);
②折合后薄鐵片既無空隙、又不重疊地圍成各盒面,請你畫出符合上述制作方案的一種草案(不必說明畫法與根據(jù)),并求當?shù)酌娣e為800cm2時,該盒子的高.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com