1.如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若∠DBC=30°,DE=1cm,求BD的長(zhǎng).
(3)AE=4,BD=10,求CD的長(zhǎng)度.

分析 (1)連接OA,根據(jù)角之間的互余關(guān)系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切線;
(2)根據(jù)圓周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案;
(3)先利用三個(gè)角是直角的四邊形是矩形,得出OF=AE=4,再用勾股定理求出DF即可得出CD.

解答 (1)證明:連接OA,
∵DA平分∠BDE,
∴∠BDA=∠EDA.
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠EDA,
∴OA∥CE.
∵AE⊥CE,
∴AE⊥OA.
∴AE是⊙O的切線.

(2)解:∵BD是直徑,
∴∠BCD=∠BAD=90°.
∵∠DBC=30°,∠BDC=60°,
∴∠BDE=120°.
∵DA平分∠BDE,
∴∠BDA=∠EDA=60°.
∴∠ABD=∠EAD=30°.
∵在Rt△AED中,∠AED=90°,∠EAD=30°,
∴AD=2DE.
∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,
∴BD=2AD=4DE.
∵DE的長(zhǎng)是1cm,
∴BD的長(zhǎng)是4cm.

(3)解:如圖2,連接OA,過(guò)O點(diǎn)作OF垂直CD于F,
∴∠OFE=90°,CD=2DF,
∵AE是⊙O的切線.
∴∠OAE=90°,
∵AE⊥CD,
∴∠AED=90°,
∴∠OFE=∠OAE=∠AED=90°,
∴四邊形OAEF是矩形,
∴OF=AE=4,
在Rt△ODF中,OD=$\frac{1}{2}$BD=5,
∴DF=$\sqrt{O{D}^{2}-O{F}^{2}}$=3
∴CD=2DF=6.

點(diǎn)評(píng) 此題是四邊形綜合題,主要考查了切線的判定,角平分線的性質(zhì),含30°的直角三角形的性質(zhì),勾股定理,矩形的判定和性質(zhì),構(gòu)造出直角三角形是解本題的關(guān)鍵,是一道中等難度的中考常考題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列各式中,從左到右的變形是因式分解的是( 。
A.(x+3y)(x-3y)=x2-9y2B.a(x+y+1)=ax+ay+a
C.4x2-1=(2x+1)(2x-1)D.a2c-a2b+1=a2(c-b)+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,四邊形ABCD是正方形,點(diǎn)E為ABCD內(nèi)一點(diǎn),將BE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到BF,連接EF、AE、CF,EF與CB交于點(diǎn)G.
(1)求證:AE=CF;
(2)若∠ABE=55°,求∠EGC的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,G為BC的中點(diǎn),且DG⊥BC,DE⊥AB于E,DF⊥AC于F,BE=CF.
(1)求證:AD是∠BAC的平分線;
(2)如果AB=8,AC=6,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.閱讀理解題:小聰是個(gè)非常熱愛(ài)學(xué)習(xí)的學(xué)生,老師在黑板上寫(xiě)了一題:若方程x2-6x-k-1=0與x2-kx-7=0有相同根,試求k的值及相同根.思考片刻后,小聰解答如下:
解:設(shè)相同根為m,根據(jù)題意,得
$\left\{\begin{array}{l}{{m}^{2}-6m-k-1=0,①}\\{{m}^{2}-km-7=0,②}\end{array}\right.$
①-②,得(k-6)m=k-6      ③
顯然,當(dāng)k=6時(shí),兩個(gè)方程相同,即兩個(gè)方程有兩個(gè)相同根-1和7;當(dāng)k≠6時(shí),由③得m=1,代入②式,得k=-6,此時(shí)兩個(gè)方程有一相同根x=1.
∴當(dāng)k=-6時(shí),有一相同根x=1;當(dāng)k=6時(shí),有兩個(gè)相同根是-1和7
聰明的同學(xué),請(qǐng)你仔細(xì)閱讀上面的解題過(guò)程,解答問(wèn)題:已知k為非負(fù)實(shí)數(shù),當(dāng)k取什么值時(shí),關(guān)于x的方程x2+kx-1=0與x2+x+k-2=0有相同的實(shí)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知直線y=$\frac{4}{3}$x+8交x軸于A點(diǎn),交y軸于B點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為長(zhǎng)方形.
(1)點(diǎn)D的坐標(biāo)為(-6,4);點(diǎn)E的坐標(biāo)為(-3,4).
(2)設(shè)直線AB與CD相交于點(diǎn)E,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度,沿AO、OC向點(diǎn)C作勻速運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,
①△PAE的面積為S,請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
②在動(dòng)點(diǎn)P從A出發(fā)的同時(shí),動(dòng)點(diǎn)Q從C點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,沿CE向點(diǎn)E作勻速運(yùn)動(dòng),當(dāng)P、Q中的一點(diǎn)到達(dá)終點(diǎn)后,該點(diǎn)停止運(yùn)動(dòng),另一點(diǎn)繼續(xù)運(yùn)動(dòng),直至到達(dá)終點(diǎn),整個(gè)運(yùn)動(dòng)停止.問(wèn):是否存在這樣的t,使得直線PQ將四邊形AOCE的面積分成1:3兩部分?若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說(shuō)明理由.      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知:如圖,AB=CD,AE⊥BC,DF⊥BC,CE=BF.
求證:AB∥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,△ABC是等邊三角形,AB=2cm,動(dòng)點(diǎn)P、Q分別從點(diǎn)B、C同時(shí)出發(fā),運(yùn)動(dòng)速度均為2cm/s.點(diǎn)P從B點(diǎn)出發(fā),沿B→C運(yùn)動(dòng),到點(diǎn)C停止,點(diǎn)Q從點(diǎn)C出發(fā),沿C→B運(yùn)動(dòng),到點(diǎn)B停止,連接AP、AQ,點(diǎn)P關(guān)于直線AB的對(duì)稱點(diǎn)為D,連接BD、DQ,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)PQ=BD時(shí),t=$\frac{1}{3}$或1s;
(2)求證:△ACP≌△ABQ;
(3)求證:△ADQ是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,拋物線y=ax2+bx與x軸交于點(diǎn)A(4,0),點(diǎn)B(1,3)在拋物線上,點(diǎn)C、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過(guò)點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時(shí),求出點(diǎn)P的坐標(biāo);
(3)若點(diǎn)M在直線BH上運(yùn)動(dòng)且在x軸下方,點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)M為直角頂點(diǎn)的△CMN為等腰直角三角形時(shí),求出此時(shí)△CMN的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案