【題目】如圖,△ABC與△A1B1C1關(guān)于點O成中心對稱,下列結(jié)論:
①∠BAC=∠B1A1C1;
②AC=A1C1;
③OA=OA1;
④△ABC與△A1B1C1的面積相等,
其中正確的有( )
A.1個
B.2個
C.3個
D.4個
【答案】D
【解析】解:∵△ABC與△A1B1C1關(guān)于點O成中心對稱,
∴△ABC≌△A1B1C1 , OA=OA1 ,
∴∠BAC=∠B1A1C1、AC=A1C1 , △ABC與△A1B1C1的面積相等,
∴①②③④正確。
所以答案是:D
【考點精析】關(guān)于本題考查的全等三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì),需要了解全等三角形的對應(yīng)邊相等; 全等三角形的對應(yīng)角相等;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點M,N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P
(1)求正五邊形ABCDE每個內(nèi)角的度數(shù);
(2)求證:△ABM≌△BCN
(3)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標(biāo)分別為x1,x2,其中﹣1<x1<0.1<x2<2.下列結(jié)論:4a+2b+c<0;2a+b<0;b2+8a>4ac;
a<﹣1;其中結(jié)論正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖,平行四邊形OBCD中,OB=8cm,BC=6cm,∠DOB=45°,點P從O沿OB邊向點B移動,點Q從點B沿BC邊向點C移動,P,Q同時出發(fā),速度都是1cm/s.
(1)求經(jīng)過O,B,D三點的拋物線的解析式;
(2)判斷P,Q移動幾秒時,△PBQ為等腰三角形;
(3)若允許P點越過B點在BC上運動,Q點越過C點在CD上運動,設(shè)線PQ與OB,BC,DC圍成的圖形面積為y(cm2),點P,Q的移動時間為t(s),請寫出y與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(-3,5),B(-2,1),C(-1,3)
①若△ABC經(jīng)過平移后得到△A1B1C1,已知點C1的坐標(biāo)為(4,0),寫出頂點A1,B1的坐標(biāo)
②若△ABC和△A2B2C2關(guān)于原點O成中心對稱,寫出△A2B2C2的各頂點的坐標(biāo);
③將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A3B3C3,寫出△A3B3C3的各頂點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校共有1000名學(xué)生,為了了解他們的視力情況,隨機(jī)抽查了部分學(xué)生的視力,并將調(diào)查的數(shù)據(jù)整理繪制成直方圖和扇形圖.
(1)這次共調(diào)查了多少名學(xué)生?扇形圖中的a、b值分別是多少?
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)在光線較暗的環(huán)境下學(xué)習(xí)的學(xué)生占對應(yīng)被調(diào)查學(xué)生的比例如下表:
視力 | ≤0.35 | 0.35~0.65 | 0.65~0.95 | 0.95~1.25 | 1.25~1.55 |
比例 |
根據(jù)調(diào)查結(jié)果估計該校有多少學(xué)生在光線較暗的環(huán)境下學(xué)習(xí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是真命題的是( )
A.無限小數(shù)都是無理數(shù)
B.若a>b,則c﹣a>c﹣b
C.立方根等于本身的數(shù)是0和1
D.平面內(nèi)如果兩條直線都和第三條直線垂直,那么這兩條直線互相平行
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com