【題目】在□ABCD中,經(jīng)過(guò)A、B、C三點(diǎn)的⊙O與AD相切于點(diǎn)A,經(jīng)過(guò)點(diǎn)C的切線與AD的延長(zhǎng)線相交于點(diǎn)P,連接AC.
(1)求證:AB=AC;
(2)若AB=4,⊙O的半徑為,求PD的長(zhǎng).
【答案】(1)見解析,(2)
【解析】
(1)連接AO并延長(zhǎng)交BC于點(diǎn)E,交⊙O于點(diǎn)F,由切線的性質(zhì)可得∠FAP=90°,根據(jù)平行四邊形的性質(zhì)可得∠AEB=90°,由垂徑定理點(diǎn)BE=CE,根據(jù)垂直平分線的性質(zhì)即可得AB=AC;(2)連接FC,OC,設(shè)OE=x,則EF=-x,根據(jù)AF為直徑可得∠ACF=90°,利用勾股定理可得CF的長(zhǎng),利用勾股定理可證明OC2-OE2=CF2-EF2,即可求出x的值,進(jìn)而可得EC、BC的長(zhǎng),由平行線性質(zhì)可得∠PAC=∠ACB,由切線長(zhǎng)定理可得PA=PC,即可證明∠PAC=∠PCA,由AB=AC可得∠ABC=∠ACB,利用等量代換可得∠ABC=∠PAC,即可證明△PAC∽△ABC,根據(jù)相似三角形的性質(zhì)可求出AP的長(zhǎng),根據(jù)PD=AP-AD即可得答案.
(1)連接AO并延長(zhǎng)交BC于點(diǎn)E,交⊙O于點(diǎn)F.
∵AP是⊙O的切線,AF是⊙O的直徑,
∴AF⊥AP,
∴∠FAP=90°.
∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠AEB=∠FAP=90°,
∴AF⊥BC.
∵AF是⊙O的直徑,AF⊥BC,
∴BE=CE.
∵AF⊥BC,BE=CE,
∴AB=AC.
(2)連接FC,OC.
設(shè)OE=x,則EF=-x.
∵AF是⊙O的直徑,
∴∠ACF=90°.
∵AC=AB=4,AF=2,
∴在Rt△ACF中,∠ACF=90°,
∴CF==2.
∵在Rt△OEC中,∠OEC=90°,
∴CE2=OC2-OE2.
∵在Rt△FEC中,∠FEC=90°,
∴CE2=CF2-EF2.
∴OC2-OE2=CF2-EF2.即-x2=22-(-x)2.
解得x=.
∴EC==.
∴BC=2EC=.
∵四邊形ABCD是平行四邊形,
∴AD=BC=.
∵AD∥BC,
∴∠PAC=∠ACB.
∵PA,PC是⊙O的切線,
∴PA=PC.
∴∠PAC=∠PCA.
∵AB=AC,
∴∠ABC=∠ACB.
∴∠PAC=∠ABC,∠PCA=∠ACB.
∴△PAC∽△ABC,
∴=.
∴AP=·AB=2.
∴PD=AP-AD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在抗擊新型冠狀病毒疫情期間,某校學(xué)生主動(dòng)發(fā)起為武漢加油捐款活動(dòng),為了了解學(xué)生捐款金額(單位:元),隨機(jī)調(diào)查了該校的部分學(xué)生,根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(Ⅰ)本次接受調(diào)查的學(xué)生人數(shù)為_________,圖①中m的值為_________;
(Ⅱ)求統(tǒng)計(jì)的這組學(xué)生捐款數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)統(tǒng)計(jì)的這組學(xué)生捐款數(shù)據(jù)的樣本數(shù)據(jù),若該校共有1800名學(xué)生,估計(jì)該校此次捐款總金額為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,(點(diǎn),分別與點(diǎn),對(duì)應(yīng)),,.固定不動(dòng),運(yùn)動(dòng),并滿足點(diǎn)在邊從向移動(dòng)(點(diǎn)不與,重合),始終經(jīng)過(guò)點(diǎn),與邊交于點(diǎn),當(dāng)是等腰三角形時(shí),______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,隨著社會(huì)經(jīng)濟(jì)的發(fā)展,人們的環(huán)境保護(hù)意識(shí)也在逐步增強(qiáng).某社區(qū)設(shè)立了“保護(hù)環(huán)境愛我地球”的宣傳牌.已知立桿AB的高度是3m,從地面上某處D點(diǎn)測(cè)得宣傳牌頂端C點(diǎn)和底端B點(diǎn)的仰角分別是62°和45°.求宣傳牌的高度BC的長(zhǎng).(精確到0.1m,參考數(shù)據(jù):sin62°=0.83,cos62°=0.47,tan62°=1.88)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,DE∥CB.若AB=10,CD=6,則DE的長(zhǎng)為 ( )
A.B.C.6D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)A、點(diǎn)B在直線的兩側(cè).
(點(diǎn)A到直線的距離小于點(diǎn)B到直線的距離).
如圖, (1)作點(diǎn)B關(guān)于直線的對(duì)稱點(diǎn)C; (2)以點(diǎn)C為圓心,的長(zhǎng)為半徑作,交于點(diǎn)E; (3)過(guò)點(diǎn)A作的切線,交于點(diǎn)F,交直線于點(diǎn)P; (4)連接、. |
根據(jù)以上作圖過(guò)程及所作圖形,下列四個(gè)結(jié)論中:
①是的切線; ②平分;
③; ④.
所有正確結(jié)論的序號(hào)是___________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,且,.給出如下定義:若平面上存在一點(diǎn)P,使是以線段為斜邊的直角三角形,則稱點(diǎn)P為點(diǎn)A、點(diǎn)B的“直角點(diǎn)”.
(1)已知點(diǎn)A的坐標(biāo)為.
①若點(diǎn)B的坐標(biāo)為,在點(diǎn)、和中,是點(diǎn)A、點(diǎn)B的“直角點(diǎn)”的是_________;
②點(diǎn)B在x軸的正半軸上,且,當(dāng)直線上存在點(diǎn)A、點(diǎn)B的“直角點(diǎn)”時(shí),求b的取值范圍;
(2)的半徑為r,點(diǎn)為點(diǎn)、點(diǎn)的“直角點(diǎn)”,若使得與有交點(diǎn),直接寫出半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為2的正方形ABCD中,P為AB上的一動(dòng)點(diǎn),E為AD中點(diǎn),PE交CD延長(zhǎng)線于Q,過(guò)E作EF⊥PQ交BC的延長(zhǎng)線于F,則下列結(jié)論:①△APE≌△DQE;②PQ=EF;③當(dāng)P為AB中點(diǎn)時(shí),CF=;④若H為QC的中點(diǎn),當(dāng)P從A移動(dòng)到B時(shí),線段EH掃過(guò)的面積為1,其中正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com