【題目】在邊長為2的正方形ABCD中,P為AB上的一動點,E為AD中點,PE交CD延長線于Q,過E作EF⊥PQ交BC的延長線于F,則下列結論:①△APE≌△DQE;②PQ=EF;③當P為AB中點時,CF=;④若H為QC的中點,當P從A移動到B時,線段EH掃過的面積為1,其中正確的有( )
A.1個B.2個C.3個D.4個
【答案】B
【解析】
根據(jù)正方形的性質(zhì)、全等三角形的性質(zhì)、勾股定理、三角形面積公式一一判斷即可.
①∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠A=∠B=90°,
∵∠A=∠EDQ,∠AEP=∠QED,AE=ED,
∴△AEP≌△DEQ,故①正確,
②作PG⊥CD于G,EM⊥BC于M,
∴∠PGQ=∠EMF=90°,
∵EF⊥PQ,
∴∠PEF=90°,
∴∠PEN+∠NEF=90°,
∵∠NPE+∠NEP=90°,
∴∠NPE=∠NEF,
∵PG=EM,
∴△EFM≌△PQG,
∴EF=PQ,故②正確,
③連接QF.則QF=PF,PB2+BF2=QC2+CF2,設CF=x,則(2+x)2+12=32+x2,
∴x=1,故③錯誤,
④當P在A點時,Q與D重合,QC的中點H在DC的中點S處,
當P運動到B時,QC的中點H與D重合,
故EH掃過的面積為△ESD的面積的一半為,故④錯誤.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】某市中心城區(qū)居民用水實行以戶為單位的三級階梯收費辦法:
第Ⅰ級:居民每戶每月用水不超過18噸時,每噸收水費3元;
第Ⅱ級:居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級標準收費,超過的部分每噸收水費4元;
第Ⅲ級:居民每戶每月用水超過25噸,未超過25噸的部分按照第Ⅰ、Ⅱ級標準收費,超過的部分每噸收水費6元.
現(xiàn)把上述水費階梯收費辦法稱為方案①;假設還存在方案②:居民每戶月用水一律按照每噸4元的標準繳費.
設一戶居民月用水x噸.
(Ⅰ)根據(jù)題意填表:
(Ⅱ)設方案①應繳水費為元,方案②應繳水費為元,分別求,關于x的函數(shù)解析式;
(Ⅲ)當時,通過計算說明居民選擇哪種付費方式更合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD中,經(jīng)過A、B、C三點的⊙O與AD相切于點A,經(jīng)過點C的切線與AD的延長線相交于點P,連接AC.
(1)求證:AB=AC;
(2)若AB=4,⊙O的半徑為,求PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F.若BC=4,∠CBD=30°,則BF的長為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點E是AC的中點.
(1)求證:直線DE是⊙O的切線;
(2)若⊙O半徑為1,BC=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑, BC交⊙O于點D,E是的中點,連接AE交BC于點F,∠ACB =2∠EAB.
(1)求證:AC是⊙O的切線;
(2)若,,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在 Rt△ABC 中,∠ACB=90°,BE 平分∠ABC,D 是邊 AB 上一點,以 BD為直徑的⊙O 經(jīng)過點 E,且交 BC 于點 F.
(1)求證:AC 是⊙O 的切線;
(2)若 BC=8,⊙O 的半徑為 5,求 CE 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.
(1)求證:AC∥DE;
(2)過點B作BF⊥AC于點F,連接EF,試判別四邊形BCEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于A、B兩點,其中點A坐標為(﹣3,0),與y軸交于點C(0,3).
(1)求拋物線的函數(shù)解析式;
(2)點M為拋物線y=﹣x2+bx+c上異于點C的一個點,且S△OMC=S△ABC,求點M的坐標;
(3)若點P為x軸上方拋物線上任意一點,點D是拋物線對稱軸與x軸的交點,直線AP、BP分別交拋物線的對稱軸于點E、F.請問DE+DF是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com