【題目】如圖,四邊形ABCD為正方形(各邊相等,各內角為直角),E是BC邊上一點,F是CD上的一點.
(1)若△CFE的周長等于正方形ABCD的周長的一半,求證:∠EAF=45°;
(2)在(1)的條件下,若DF=2,CF=4,CE=3,求△AEF的面積.
【答案】(1)見解析;(2)15.
【解析】
(1)延長CF至G,使DG=BE,連接AG,由已知條件得出CE+CF+EF=CD+BC,得出DF+BE=EF,證出DF+DG=EF,即GF=EF,由SAS證明△ABE≌△ADG,得出AE=AG,∠BAE=∠DAG,證出∠EAG=90°,由SSS證明△AEF≌△AGF,得出∠EAF=∠GAF=×90°=45°;
(2)由已知條件得出AB=AD=CD=BC=6,BE=BC-CE=3,由(1)得:==+,即可得出答案.
(1) 證明:延長CF至G,使DG=BE,連接AG,如圖所示:
∵四邊形ABCD是正方形,
∴∠BAD=∠ABE=∠ADF=90°,AB=BC=CD=AD,
∴∠ADG=90°,
∵△CFE的周長等于正方形ABCD的周長的一半,
∴CE+CF+EF=CD+BC,
∴DF+BE=EF,
∴DF+DG=EF,即GF=EF,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∴∠EAG=90°,
在△AEF和△AGF中,
,
∴△AEF≌△AGF(SSS),
∴∠EAF=∠GAF=×90°=45°;
(2)解:∵DF=2,CF=4,CE=3,
∴AB=AD=CD=BC=2+4=6,BE=BC﹣CE=3,
由(1)得:==+=×6×3+×6×2=15.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A為y軸正半軸上一點,過點A作x軸的平行線,交函數的圖象于B點,交函數的圖象于C,過C作y軸和平行線交BO的延長線于D.
(1)如果點A的坐標為(0,2),求線段AB與線段CA的長度之比;
(2)如果點A的坐標為(0,a),求線段AB與線段CA的長度之比;
(3)在(1)條件下,四邊形AODC的面積為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點A、D在y軸正半軸上,點B、C分別在x軸上,CD平分∠ACB,與y軸交于D點,∠CAO=90°-∠BDO.
(1)求證:AC=BC:
(2)如圖2,點C的坐標為(4,0),點E為AC上一點,且∠DEA=∠DBO,求BC+EC的長;
(3)如圖3,過D作DF⊥AC于F點,點H為FC上一動點,點G為OC上一動點,當H在FC上移動、點G在OC上移動時,始終滿足∠GDH=∠GDO+∠FDH,試判斷FH、GH、OG這三者之間的數量關系,寫出你的結論并加以證明.
(圖3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,AD,BE分別為BC、AC邊上的高,AD、BE相交于點F,連接CF,則下列結論,
①BF=AC;
②∠FCD=45°;
③若BF=2EC,則△FDC周長等于AB的長;
④若∠FBD=30°,BF=2,則AF=﹣1.其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列各組條件中,能夠判定△ABC≌△DEF 的是( )
A. ∠A=∠D,∠B=∠E,∠C=∠FB. AB=DE,BC=EF,∠A=∠D
C. ∠B=∠E=90°,BC=EF,AC=DFD. ∠A=∠D,AB=DF,∠B=∠E
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE:CE=3:2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.
(1)線段AE= ;
(2)設點P的運動時間為t(s),EF的長度為y,求y關于t的函數關系式,并寫出t的取值范圍;
(3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑;
(4)如圖2,將△AEC沿直線AE翻折,得到△AEC',連結AC',如果∠ABF=∠CBC′,求t值.(直接寫出答案,不要求解答過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】同學們,學習了無理數之后,我們已經把數的領域擴大到了實數的范圍,這說明我們的知識越來越豐富了!可是,無理數究竟是一個什么樣的數呢?下面讓我們在幾個具體的圖形中認識一下無理數.
(1)如圖①△ABC是一個邊長為2的等腰直角三角形,它的面積是2,把它沿著斜邊的高線剪開拼成如圖②的正方形ABCD,則這個正方形的面積也就等于正方形的面積即為2,則這個正方形的邊長就是,它是一個無理數.
(2)如圖,直徑為1個單位長度的圓從原點O沿數軸向右滾動一周,圓上的一點P(滾動時與點O重合)由原點到達點O′,則OO′的長度就等于圓的周長,所以數軸上點O′代表的實數就是_____,它是一個無理數.
(3)如圖,在Rt△ABC中,∠C=90°,AC=2,BC=1,根據已知可求得AB=_____,它是一個無理數.好了,相信大家對無理數是不是有了更具體的認識了,那么你也試著在圖形中作出兩個無理數吧:
①你能在6×8的網格圖中(每個小正方形邊長均為1),畫出一條長為的線段嗎?
②學習了實數后,我們知道數軸上的點與實數是一一對應的關系,那么你能在數軸上找到表示-的點嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正比例函數和反比例函數的圖象都經過點A(﹣3,﹣3).
(1)求正比例函數和反比例函數的表達式;
(2)把直線OA向上平移后與反比例函數的圖象交于點B(﹣6,m),與x軸交于點C,求m的值和直線BC的表達式;
(3)在(2)的條件下,直線BC與y軸交于點D,求以點A,B,D為頂點的三角形的面積;
(4)在(3)的條件下,點A,B,D在二次函數的圖象上,試判斷該二次函數在第三象限內的圖象上是否存在一點E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點E的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com