【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,給出下列說(shuō)法:①abc>0;②方程ax2+bx+c=0的根為x1=﹣1,x2=3;③6a﹣b+c<0;④a﹣am2>bm﹣b,且m﹣1≠0,其中正確的說(shuō)法有(

A.①②③
B.②③④
C.①②④
D.②④

【答案】B
【解析】解:∵拋物線的開(kāi)口方向向下,
∴a<0,
∵對(duì)稱(chēng)軸在y軸的右邊,
∴b>0,
∵拋物線與y軸的交點(diǎn)在x軸的上方,
∴c>0,
∴abc<0,故①錯(cuò)誤;
根據(jù)圖象知道拋物線與x軸的交點(diǎn)的橫坐標(biāo)分別為x=﹣1或x=3,
∴方程ax2+bx+c=0的根為x1=﹣1、x2=3,故②正確;
③∵a<0,∴﹣5a>0
當(dāng)x=﹣1時(shí),a﹣b+c=0,
∴a﹣b+c<﹣5a,
∴6a﹣b+c<0;故③正確;
④∵拋物線的頂點(diǎn)橫坐標(biāo)為1,且開(kāi)口向下,
∴當(dāng)x=1時(shí),對(duì)應(yīng)的函數(shù)值最大,即a+b+c>am2+bm+c(m﹣1≠0),
∴a+b>am2+bm,
∴a﹣am2>bm﹣b,本④正確;
故選B.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系,需要了解二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人的錢(qián)包內(nèi)有10元錢(qián)、20元錢(qián)和50元錢(qián)的紙幣各1張,從中隨機(jī)取出2張紙幣.
(1)求取出紙幣的總額是30元的概率;
(2)求取出紙幣的總額可購(gòu)買(mǎi)一件51元的商品的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步緩解城市交通壓力,義烏市政府推出公共自行車(chē),公共自行車(chē)在任何一個(gè)網(wǎng)店都能實(shí)現(xiàn)通租通還,某校學(xué)生小明統(tǒng)計(jì)了周六校門(mén)口停車(chē)網(wǎng)點(diǎn)各時(shí)段的借、還自行車(chē)數(shù),以及停車(chē)點(diǎn)整點(diǎn)時(shí)刻的自行車(chē)總數(shù)(稱(chēng)為存量)情況,表格中x=1時(shí)的y的值表示8:00點(diǎn)時(shí)的存量,x=2時(shí)的y值表示9:00點(diǎn)時(shí)的存量…以此類(lèi)推,他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個(gè)二次函數(shù)關(guān)系.

時(shí)段

x

還車(chē)數(shù)

借車(chē)數(shù)

存量y

7:00﹣8:00

1

7

5

15

8:00﹣9:00

2

8

7

n

根據(jù)所給圖表信息,解決下列問(wèn)題:
(1)m= , 解釋m的實(shí)際意義:;
(2)求整點(diǎn)時(shí)刻的自行車(chē)存量y與x之間滿足的二次函數(shù)關(guān)系式;
(3)已知10:00﹣11:00這個(gè)時(shí)段的借車(chē)數(shù)比還車(chē)數(shù)的一半還要多2,求此時(shí)段的借車(chē)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了了解高峰時(shí)段16路車(chē)從總站乘該路車(chē)出行的人數(shù),隨機(jī)抽查了10個(gè)班次乘該路車(chē)人數(shù),結(jié)果如下:
14,23,16,25,23,28,26,27,23,25
(1)這組數(shù)據(jù)的眾數(shù)為 , 中位數(shù)為;
(2)計(jì)算這10個(gè)班次乘車(chē)人數(shù)的平均數(shù);
(3)如果16路車(chē)在高峰時(shí)段從總站共出車(chē)60個(gè)班次,根據(jù)上面的計(jì)算結(jié)果,估計(jì)在高峰時(shí)段從總站乘該路車(chē)出行的乘客共有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織了一次初三科技小制作比賽,有A、B、C、D四個(gè)班共提供了100件參賽作品,C班提供的參賽作品的獲獎(jiǎng)率為50%,其他幾個(gè)班的參賽作品情況及獲獎(jiǎng)情況繪制在下列圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖中.

(1)B班參賽作品有多少件?
(2)請(qǐng)你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)通過(guò)計(jì)算說(shuō)明,哪個(gè)班的獲獎(jiǎng)率高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:在平面直角坐標(biāo)系xOy中,對(duì)于任意兩點(diǎn)P1(x1 , y1)與P2(x2 , y2)的“非常距離”,給出如下定義:
若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)P1與點(diǎn)P2的“非常距離”為|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,則點(diǎn)P1與點(diǎn)P2的“非常距離”為|y1﹣y2|.
例如:點(diǎn)P1(1,2),點(diǎn)P2(3,5),因?yàn)閨1﹣3|<|2﹣5|,所以點(diǎn)P1與點(diǎn)P2的“非常距離”為|2﹣5|=3,也就是圖1中線段P1Q與線段P2Q長(zhǎng)度的較大值(點(diǎn)Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q的交點(diǎn)).

(1)已知點(diǎn)A(﹣ ,0),B為y軸上的一個(gè)動(dòng)點(diǎn).
①若點(diǎn)B(0,3),則點(diǎn)A與點(diǎn)B的“非常距離”為;
②若點(diǎn)A與點(diǎn)B的“非常距離”為2,則點(diǎn)B的坐標(biāo)為
③直接寫(xiě)出點(diǎn)A與點(diǎn)B的“非常距離”的最小值;
(2)已知點(diǎn)D(0,1),點(diǎn)C是直線y= x+3上的一個(gè)動(dòng)點(diǎn),如圖2,求點(diǎn)C與點(diǎn)D“非常距離”的最小值及相應(yīng)的點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,有一張矩形紙片ABCD,已知AB=10,AD=12,現(xiàn)將紙片進(jìn)行如下操作:現(xiàn)將紙片沿折痕BF進(jìn)行折疊,使點(diǎn)A落在BC邊上的點(diǎn)E處,點(diǎn)F在AD上(如圖2);然后將紙片沿折痕DH進(jìn)行第二次折疊,使點(diǎn)C落在第一次的折痕BF上的點(diǎn)G處,點(diǎn)H在BC上(如圖3),給出四個(gè)結(jié)論:
①AF的長(zhǎng)為10;②△BGH的周長(zhǎng)為18;③ = ;④GH的長(zhǎng)為5,
其中正確的結(jié)論有 . (寫(xiě)出所有正確結(jié)論的番號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊△ABC,AB=12,以AB為直徑的半圓與BC邊交于點(diǎn)D,過(guò)點(diǎn)D作DF⊥AC,垂足為F,過(guò)點(diǎn)F作FG⊥AB,垂足為G,連結(jié)GD.

(1)求證:DF是⊙O的切線;
(2)求FG的長(zhǎng);
(3)求tan∠FGD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】海船以5海里/小時(shí)的速度向正東方向行駛,在A處看見(jiàn)燈塔B在海船的北偏東60°方向,2小時(shí)后船行駛到C處,發(fā)現(xiàn)此時(shí)燈塔B在海船的北偏西45°方向,求此時(shí)燈塔B到C處的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案