【題目】如圖,在⊙O中,弦AD,BC相交于點(diǎn)E,連接OE,已知AD=BC,ADCB.

(1)求證:AB=CD;

(2)如果⊙O的直徑為10,DE=1,求AE的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)AE=7

【解析】

(1)欲證明AB=CD,只需證得.

(2)如圖,過(guò)OOFAD于點(diǎn)F,作OGBC于點(diǎn)G,連接OA、OC.構(gòu)建正方形EFOG,利用正方形的性質(zhì),垂徑定理和勾股定理來(lái)求AF的長(zhǎng)度,則易求AE的長(zhǎng)度.

(1)證明:如圖,∵AD=BC

= ,

=,即=

AB=CD;

(2)如圖,過(guò) O OFAD 于點(diǎn) F,作 OGBC 于點(diǎn) G,連接 OAOC

AF=FD,BG=CG

AD=BC

AF=CG

RtAOF RtCOG 中,,

RtAOFRtCOGHL),

OF=OG,

∴四邊形 OFEG 是正方形,

OF=EF

設(shè) OF=EF=x,則 AF=FD=x+1,

在直角△OAF 中.由勾股定理得到:x2+x+12=52, 解得 x=5

AF=3+1=4,即 AE=AF+3=7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A-3,1),B-1,3),C0,1.

1)將ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后的A1B1C;

2)平移ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(-5-3),畫(huà)出平移后的A2B2C2;

3)若A2B2C2A1B1C關(guān)于點(diǎn)P中心對(duì)稱(chēng),請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的頂點(diǎn)Ay軸正半軸上,邊BCx軸上,且BC=5,sinABC=,反比例函數(shù)(x>0)的圖象分別與AD,CD交于點(diǎn)M、點(diǎn)N,點(diǎn)N的坐標(biāo)是(3,n),連接OM,MC.

(1)求反比例函數(shù)的解析式;

(2)求證:OMC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,EAC上,經(jīng)過(guò)A,B,E三點(diǎn)的圓OBC于點(diǎn)D,且D點(diǎn)是弧BE的中點(diǎn),

(1)求證AB是圓的直徑;

(2)AB=8,C=60°,求陰影部分的面積;

(3)當(dāng)∠A為銳角時(shí),試說(shuō)明∠A與∠CBE的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O是△ABC的外接圓,AC是直徑,∠A=30°,BC=4,點(diǎn)DAB的中點(diǎn),連接DO并延長(zhǎng)交⊙O于點(diǎn)P.

(1)求劣弧PC的長(zhǎng)結(jié)果保留π);

(2)過(guò)點(diǎn)PPFAC于點(diǎn)F,求陰影部分的面積結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的對(duì)角線交于點(diǎn),平分于點(diǎn),且,,連接.下列結(jié)論:①;②;③;④,成立的個(gè)數(shù)有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用一段100米長(zhǎng)的籬笆圍成一個(gè)一邊靠墻(墻足夠長(zhǎng)),中間用籬笆隔開(kāi)的矩形養(yǎng)殖場(chǎng),中間用兩道籬笆隔開(kāi)分出三個(gè)小的矩形,設(shè)矩形垂直于墻的一邊長(zhǎng)為x 米,矩形ABCD的面積記為y平方米

(1)直接寫(xiě)出yx的函數(shù)關(guān)系式及自變量x的取值范圍;

(2)當(dāng)x=8,求y的值;

(3)當(dāng)x取何值時(shí),y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,其對(duì)稱(chēng)軸為直線x=﹣1,給出下列結(jié)果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.

則正確的結(jié)論是(

A. (1)(2)(3)(4) B. (2)(4)(5) C. (2)(3)(4) D. (1)(4)(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一幅長(zhǎng)為80cm,寬為50cm的矩形風(fēng)景畫(huà)的四周鑲一條相同寬度的金色紙邊,制成一幅矩形掛圖,如圖所示,如果要使整個(gè)掛圖的面積是5400cm2,設(shè)金色紙邊的寬為xcm,那么x滿足的方程是( )

A. (80+2x)(50+2x)=5400 B. (80-x)(50-x)=5400

C. (80+x)(50+x)=5400 D. (80-2x)(50-2x)=5400

查看答案和解析>>

同步練習(xí)冊(cè)答案