【題目】如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為入口,F,G為出口,其中直行道為ABCG,EF,且ABCGEF;彎道為以點O為圓心的一段弧,且所對的圓心角均為90°.甲、乙兩車由A口同時駛入立交橋,均以8m/s的速度行駛,從不同出口駛出,其間兩車到點O的距離ym)與時間xs)的對應關系如圖2所示,結合題目信息,下列說法錯誤的是(

A.立交橋總長為168 m

B.F口出比從G口出多行駛48m

C.甲車在立交橋上共行駛11 s

D.甲車從F口出,乙車從G口出

【答案】D

【解析】

根據(jù)題意、結合圖象問題可得.

解:由圖象可知,兩車通過,,弧時每段所用時間均為3s,通過直行道AB,CGEF時,每段用時為4s

因此,甲車所用時間為4+3+411s,故C正確;

根據(jù)兩車運行路線,從F口駛出比從G口多走,弧長之和,用時為6s,則多走48m,故B正確;

根據(jù)兩車運行時間,可知甲先駛出,應從G口駛出,故D錯誤;

根據(jù)題意立交橋總長為(3×3+4×3×8168m,故A正確;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】學校某數(shù)學興趣小組想測學校旗桿高度如圖,明明在稻香園一樓點測得旗桿頂點仰角為,在稻香園二樓點測得點的仰角為.明明從點朝旗桿方向步行米到點,沿坡度的臺階走到點,再向前走米到旗桿底部,已知稻香園高度為米,則旗桿的高度約為( )(參考數(shù)據(jù):,,

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明在大樓30米高(即PH30米)的窗口P處進行觀測,測得山坡上A處的俯角∠APQ15°,山腳B處的俯角∠BPQ60°,已知該山坡的坡度i(即tanABC)為1,點P,HB,CA在同一個平面上,點H、BC在同一條直線上,且PHHC

1)求出山坡坡角(∠ABC)的大小;

2)求AB兩點間的距離(結果精確到0.1米,參考數(shù)據(jù):1.732).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=﹣x2+bx+c經(jīng)過點A4,3),頂點為B,對稱軸是直線x2

1)求拋物線的函數(shù)表達式和頂點B的坐標;

2)如圖1,拋物線與y軸交于點C,連接AC,過AADx軸于點DE是線段AC上的動點(點E不與A,C兩點重合);

i)若直線BE將四邊形ACOD分成面積比為13的兩部分,求點E的坐標;

ii)如圖2,連接DE,作矩形DEFG,在點E的運動過程中,是否存在點G落在y軸上的同時點F恰好落在拋物線上?若存在,求出此時AE的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】墊球是排球隊常規(guī)訓練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分.

運動員丙測試成績統(tǒng)計表

測試序號

1

2

3

4

5

6

7

8

9

10

成績(分)

7

6

8

7

5

8

8

7

運動員丙測試成績的平均數(shù)和眾數(shù)都是7

1)成績表中的__________,_________

2)若在他們三人中選擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?請用你所學過的統(tǒng)計量加以分析說明(參考數(shù)據(jù):三人成績的方差分別為、

3)甲、乙、丙三人相互之間進行墊球練習,每個人的球都等可能的傳給其他兩人,球從乙手中傳出,球傳一次甲得到球的概率是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,對角線ACBD交于點O,以AD,OD為鄰邊作平行四邊形ADOE,連接BE

1)求證:四邊形AOBE是菱形;

2)若∠EAO+∠DCO180°DC3,求四邊形ADOE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】廣州中學在“讀書日”期間購進一批圖書, 需要用大小兩種規(guī)格的紙箱來裝運.個大紙箱和個小紙箱一次可以裝,本書個大紙箱和個小紙箱--次可以裝本書.

(1)一個大紙箱和一個小紙箱分別可以裝多少本書?

(2)如果一共購入本書,每個紙箱恰好裝滿,分別需要用多少個大、小紙箱?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線與x軸,y軸分別交于點A,B,點在第一象限內,連結,,.動點P在上從點A向終點B勻速運動,同時,動點Q在上從點C向終點O勻速運動,它們同時到達終點,連結于點D.

(1)求點B的坐標和a的值;

(2)當點Q運動到中點時,連結,求的面積;

(3)作交直線于點R.

①當為等腰三角形時,求的長度;

②記于點E,連結,則的最小值為__________.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內部有一動點P滿足SPAB=S矩形ABCD,則點PA、B兩點的距離之和PA+PB的最小值為______

查看答案和解析>>

同步練習冊答案