【題目】如圖(1),為等腰三角形,,點(diǎn)是底邊上的一個(gè)動(dòng)點(diǎn),,.
(1)用表示四邊形的周長(zhǎng)為 ;
(2)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形是菱形,請(qǐng)說(shuō)明理由;
(3)如果不是等腰三角形圖(2),其他條件不變,點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形是菱形(不必說(shuō)明理由).
【答案】(1);(2)當(dāng)為中點(diǎn)時(shí),四邊形是菱形,見(jiàn)解析;(3)P運(yùn)動(dòng)到∠A的平分線上時(shí),四邊形ADPE是菱形,理由見(jiàn)解析.
【解析】
(1)根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)證明∠B=∠DPB,∠C=∠EPC,進(jìn)而可得DB=DP,PE=EC,從而可得四邊形ADPE的周長(zhǎng)=AD+DP+PE+AE=AB+AC;
(2)當(dāng)P運(yùn)動(dòng)到BC中點(diǎn)時(shí),四邊形ADPE是菱形;首先證明四邊形ADPE是平行四邊形,再證明DP=PE即可得到四邊形ADPE是菱形;
(3)P運(yùn)動(dòng)到∠A的平分線上時(shí),四邊形ADPE是菱形,首先證明四邊形ADPE是平行四邊形,再根據(jù)平行線的性質(zhì)可得∠1=∠3,從而可證出∠2=∠3,進(jìn)而可得AE=EP,然后可得四邊形ADPE是菱形.
(1)∵PD∥AC,PE∥AB,
∴∠DPB=∠C,∠EPC=∠B,
∵AB=AC,
∴∠B=∠C,
∴∠B=∠DPB,∠C=∠EPC,
∴DB=DP,PE=EC,
∴四邊形ADPE的周長(zhǎng)是:AD+DP+PE+AE=AB+AC=2a;
(2)當(dāng)P運(yùn)動(dòng)到BC中點(diǎn)時(shí),四邊形ADPE是菱形;
∵PD∥AC,PE∥AB,
∴四邊形ADPE是平行四邊形,
∴PD=AE,PE=AD,
∵PD∥AC,PE∥AB,
∴∠DPB=∠C,∠EPC=∠B,
∵P是BC中點(diǎn),
∴PB=PC,
在△DBP和△EPC中,
,
∴△DBP≌△EPC(ASA),
∴DP=EC,
∵EC=PE,
∴DP=EP,
∴四邊形ADPE是菱形;
(3)P運(yùn)動(dòng)到∠A的平分線上時(shí),四邊形ADPE是菱形,
∵PD∥AC,PE∥AB,
∴四邊形ADPE是平行四邊形,
∵AP平分∠BAC,
∴∠1=∠2,
∵AB∥EP,
∴∠1=∠3,
∴∠2=∠3,
∴AE=EP,
∴四邊形ADPE是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明周末要乘坐公交車(chē)到植物園游玩,從地圖上查找路線發(fā)現(xiàn),幾條線路都需要換乘一次.在出發(fā)站點(diǎn)可選擇空調(diào)車(chē)A、空調(diào)車(chē)B、普通車(chē)a,換乘站點(diǎn)可選擇空調(diào)車(chē)C,普通車(chē)b、普通車(chē)c,且均在同一站點(diǎn)換乘.空調(diào)車(chē)投幣2元,普通車(chē)投幣1元.
(1)求小明在出發(fā)站點(diǎn)乘坐空調(diào)車(chē)的概率;
(2)求小明到達(dá)植物園恰好花費(fèi)3元公交費(fèi)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小紅和小白想利用所學(xué)的概率知識(shí)設(shè)計(jì)一個(gè)摸球游戲,在一個(gè)不透明的袋子中裝入完全相同的4個(gè)小球,把它們分別編號(hào)為:2、3、4、5,.兩人先后從袋中隨機(jī)摸出一個(gè)球,若摸出的兩個(gè)小球上的數(shù)字和是奇數(shù)則小紅勝,否則小白勝.請(qǐng)判斷這個(gè)游戲是否公平?并用概率知識(shí)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).
(1)求一次函數(shù)和反比例函數(shù)解析式.
(2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長(zhǎng)度至點(diǎn)F,連接AF、BF,求△ABF的面積.
(3)根據(jù)圖象,直接寫(xiě)出不等式﹣x+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=4.若動(dòng)點(diǎn)D在線段AC上(不與點(diǎn)A、C重合),過(guò)點(diǎn)D作DE⊥AC交AB邊于點(diǎn)E.點(diǎn)A關(guān)于點(diǎn)D的對(duì)稱(chēng)點(diǎn)為點(diǎn)F,以FC為半徑作⊙C,當(dāng)DE=_______時(shí),⊙C與直線AB相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,點(diǎn)E是AC的中點(diǎn).
(1)試判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑為2,∠B=50°,AC=4.8,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖,其對(duì)稱(chēng)軸為直線,給出下列結(jié)論:①;②;③;④,則正確的結(jié)論個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加全國(guó)比賽,對(duì)他們進(jìn)行了8次測(cè)試,測(cè)試成績(jī)(單位:環(huán))如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 | 第八次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 10 | 8 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | 8 | 10 |
(1)根據(jù)表格中的數(shù)據(jù),計(jì)算出甲的平均成績(jī)是 環(huán),乙的平均成績(jī)是 環(huán);
(2)分別計(jì)算甲、乙兩名運(yùn)動(dòng)員8次測(cè)試成績(jī)的方差;
(3)根據(jù)(1)(2)計(jì)算的結(jié)果,你認(rèn)為推薦誰(shuí)參加全國(guó)比賽更合適,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=-x+m(m>0)的圖象與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)C在線段OA上,點(diǎn)C的橫坐標(biāo)為n,點(diǎn)D在線段AB上,且AD=2BD,將△ACD繞點(diǎn)D旋轉(zhuǎn)180°后得到△A1C1D.
(1)若點(diǎn)C1恰好落在y軸上,試求的值;
(2)當(dāng)n=4時(shí),若△A1C1D被y軸分得兩部分圖形的面積比為3:5,求該一次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com