【題目】如圖,已知A(﹣2,3)、B(4,3).C(﹣1,﹣3)
(1)點(diǎn)B到坐標(biāo)原點(diǎn)的距離為 ;
(2)求BC的長;
(3)點(diǎn)P在y軸上,當(dāng)△ABP的面積為6時,請直接寫出點(diǎn)P的坐標(biāo).
【答案】(1)5;(2);(3)(0,1)或(0,5).
【解析】
(1)直接利用B點(diǎn)坐標(biāo)和勾股定理得出點(diǎn)B到坐標(biāo)原點(diǎn)的距離;
(2)利用C,B的坐標(biāo)和勾股定理可得出;
(3)設(shè)點(diǎn)P的坐標(biāo)為(0,y),根據(jù)△ABP的面積為6,A(-2,3)、B(4,3),利用數(shù)軸上的兩點(diǎn)的距離公式和面積公式,所以,即|x-3|=2,所以x=5或x=1,即可解答.
解:(1)∵點(diǎn)B的坐標(biāo)為:(4,3)
∴點(diǎn)B到坐標(biāo)原點(diǎn)的距離,
故答案為:5;
(2)∵B(4,3).C(﹣1,﹣3)
∴
(3)∵點(diǎn)P在y軸上,
∴設(shè)點(diǎn)P的坐標(biāo)為(0,y)
∵△ABP的面積為6,A(-2,3)、B(4,3),
∴
∴,
∴y=1或y=5,
∴P點(diǎn)的坐標(biāo)為(0,1)或(0,5).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程或方程組解應(yīng)用題:
某中學(xué)為迎接校運(yùn)會,籌集7000元購買了甲、乙兩種品牌的籃球共30個,其中購買甲品牌籃球花費(fèi)3000元,已知甲品牌籃球比乙品牌籃球的單價高50%,求乙品牌籃球的單價及個數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別在AB、AC上,且CE=BC,連接CD,將線段CD繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得到CF,連接EF.
(1)求證:△BDC≌△EFC;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC是等邊三角形,將直角三角板DEF如圖放置,其中∠F=30°,讓△ABC在直角三角板的邊EF上向右平移(點(diǎn)C與點(diǎn)F重合時停止).
(1)如圖1,當(dāng)點(diǎn)B與點(diǎn)E重合時,點(diǎn)A恰好落在直角三角板的斜邊DF上,證明:EF=2BC.
(2)在△ABC平移過程中,AB,AC分別與三角板斜邊的交點(diǎn)為G、H,如圖2,線段EB=AH是否始終成立?如果成立,請證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,EF//BC交AC、CF于M、F,若EM=3,則CE2+CF2 的值為( )
A.36B.9C.6D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,對角線AC、BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合.展開后,折痕DE分別交AB、AC于點(diǎn)E、G.連接GF.下列結(jié)論:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG.
其中正確結(jié)論的序號是( 。
A. ①②③④⑤ B. ①②③④ C. ①③④⑤ D. ①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】6月1日起,我國將全面試行居民階梯式電價,某市出臺了實(shí)施細(xì)則,具體規(guī)定如下:
設(shè)用電量為a度,當(dāng)a≤150時,電價為現(xiàn)行電價,每度0.51元;當(dāng)150<a≤240時,在現(xiàn)行電價基礎(chǔ)上,每度提高0.05元;當(dāng)a>240時,在現(xiàn)行電價基礎(chǔ)上,每度提高0.30元.設(shè)某戶的月用電量為x(度),電費(fèi)為y(元).則y與x之間的函數(shù)關(guān)系的大致圖像是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩地相距3200 m,小王、小李分別從甲、乙兩地同時出發(fā),相向而行,相遇后兩人立即返回到各自出發(fā)地并停止行進(jìn).已知小李的速度始終是60 m/min,小王在相遇后以勻速返回,但比小李晚回到原地。在整個行進(jìn)過程中,他們之間的距離y(m)與行進(jìn)的時間t(min)之間的函數(shù)關(guān)系如圖中的折線段AB—BC—CD所示,請結(jié)合圖像信息解答下列問題:
(1)小王返回時的速度= m/min,a= ,b= ;
(2)當(dāng)t為何值時,小王、小李兩人相距800 m?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com