【題目】如圖1,小紅家陽臺上放置了一個曬衣架.如圖2是曬衣架的側面示意圖,立桿AB、CD相交于點O,B、D兩點立于地面,經測量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,現(xiàn)將曬衣架完全穩(wěn)固張開,扣鏈EF成一條直線,且EF=32cm.

(1)求證:ACBD;

(2)求扣鏈EF與立桿AB的夾角OEF的度數(shù)(精確到0.1°);

(3)小紅的連衣裙穿在衣架后的總長度達到122cm,垂掛在曬衣架上是否會拖落到地面?請通過計算說明理由.

(參考數(shù)據:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科學計算器)

【答案】(1)證明參見解析;(2) 61.9°;(3) 小紅的連衣裙會拖落到地面.理由參見解析.

【解析】

試題分析:(1)根據等角對等邊和對頂角相等得出OAC=OCA=(180-AOC)和OBD=ODB=(180-BOD),AOC=BOD進而利用平行線的判定得出即可;或利用三角形相似和平行線判定可得出結論;(2)首先過點O作OMEF于點M,則EM=16cm,利用cosOEF=0.471,即可得出OEF的度數(shù);(3)首先證明RtOEMRtABH,進而得出AH的長即可.

試題解析:(1)方法一:AB、CD相交于點O,∴∠AOC=BOD,OA=OC,∴∠OAC=OCA=(180-AOC),同理可證:OBD=ODB=(180-BOD),∴∠OAC=OBD,ACBD;方法二:AB=CD=136cm,OA=OC=51cm,OB=OD=85cm,,又∵∠AOC=BOD,∴△AOC∽△BOD, ∴∠OAC=OBD;ACBD;(2)在OEF中,OE=OF=34cm,EF=32cm;過點O作OMEF于點M,則EM=16cm;cosOEF=

0.471,用科學計算器求得OEF=61.9°;(3)方法一:小紅的連衣裙會拖落到地面;在RtOEM中,OM== =30cm,過點A作AHBD于點H,同(1)可證:EFBD,∴∠ABH=OEM,則RtOEMRtABH,,AH=cm,因為小紅的連衣裙垂掛在衣架后的總長度122cm>曬衣架的高度AH=120cm.所以小紅的連衣裙會拖落到地面.方法二:小紅的連衣裙會拖落到地面;同(1)可證:EFBD,∴∠ABD=OEF=61.9°;過點A作AHBD于點H,在RtABH中sinABD=,AH=AB×sinABD=136×sin61.9°=136×0.882120.0cm,因為小紅的連衣裙垂掛在衣架后的總長度122cm>曬衣架的高度AH=120cm.所以小紅的連衣裙會拖落到地面.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】能判定一個四邊形是菱形的條件是(

A. 對角線相等且互相垂直 B. 對角線相等且互相平分

C. 對角線互相垂直 D. 對角線互相垂直平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定一種新運算,其意義為ab=a2-ab-5,21=22-2×1-5=-3.則(-4)(-2)的值為(

A. 3 B. -3 C. -13 D. -29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知|2a+b|與 互為相反數(shù).
(1)求2a﹣3b的平方根;
(2)解關于x的方程ax2+4b﹣2=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若不等式組 ,的整數(shù)解是關于x的方程2x-4=ax的根,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個三角形的兩邊長分別是23,若它的第三邊長為奇數(shù),則這個三角形的周長為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊BC、CD上的點, =,CF=DF,連接AE、AF、EF,并延長FE交AB的延長線于點G.

(1)若正方形的邊長為4,則EG等于 ;

(2)求證:ECF∽△FDA;

(3)比較EAB與EAF的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若x3m﹣2﹣2yn﹣1=3是二元一次方程,則m= , n=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【問題情境】

課外興趣小組活動時,老師提出了如下問題:

如圖①,ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.

小明在組內經過合作交流,得到了如下的解決方法:延長AD至點E,使DEAD,連接BE.請根據小明的方法思考:

(1)由已知和作圖能得到ADC≌△EDB,依據是

A.SSS B.SAS C.AAS D.HL

(2)由三角形的三邊關系可求得AD的取值范圍是

解后反思:題目中出現(xiàn)中點”、“中線等條件,可考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集中到同一個三角形之中.

【初步運用】

如圖②,ADABC的中線,BEACE,交ADF,且AEEF.若EF=3,EC=2,求線段BF的長.

【靈活運用】

如圖③,在ABC中, A=90°,DBC中點, DEDF,DEAB于點E,DFAC于點F,連接EF.試猜想線段BE、CF、EF三者之間的等量關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案