【題目】2016湖北省黃岡市)如圖,已知點(diǎn)A1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象在第四象限的交點(diǎn)為點(diǎn)B

1)求直線AB的解析式;

2)動(dòng)點(diǎn)Px,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).

【答案】1y=x4;(2P4,0).

【解析】試題分析:(1)先把A1a)代入反比例函數(shù)解析式求出a得到A點(diǎn)坐標(biāo),再解方程組,得B點(diǎn)坐標(biāo),然后利用待定系數(shù)法求AB的解析式;

2)直線ABx軸于點(diǎn)Q,如圖,利用x軸上點(diǎn)的坐標(biāo)特征得到Q點(diǎn)坐標(biāo),則PA﹣PB≤AB(當(dāng)P、A、B共線時(shí)取等號(hào)),于是可判斷當(dāng)P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)時(shí),線段PA與線段PB之差達(dá)到最大,從而得到P點(diǎn)坐標(biāo).

試題解析:(1)把A1,a)代入a=﹣3,則A1,﹣3),解方程組: ,得: ,則B3﹣1),設(shè)直線AB的解析式為y=kx+b,把A1,﹣3),B3,﹣1)代入得: ,解得: ,所以直線AB的解析式為y=x﹣4;

2)直線ABx軸于點(diǎn)Q,如圖,當(dāng)y=0時(shí),x﹣4=0,解得x=4,則Q4,0),因?yàn)?/span>PA﹣PB≤AB(當(dāng)P、A、B共線時(shí)取等號(hào)),所以當(dāng)P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)時(shí),線段PA與線段PB之差達(dá)到最大,此時(shí)P點(diǎn)坐標(biāo)為(4,0).

考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.

型】解答
結(jié)束】
22

【題目】成都三圣鄉(xiāng)花卉基地出售兩種盆栽花卉:太陽花6/盆,繡球花10/盆.若一次購(gòu)買的繡球花超過20盆時(shí),超過20盆部分的繡球花價(jià)格打8折.

(1)若小張家花臺(tái)綠化需用60盆兩種盆栽花卉,小張爸爸給他460元錢去購(gòu)買,問兩種花卉各買了多少盆?

(2)分別寫出兩種花卉的付款金額y(元)關(guān)于購(gòu)買量x(盆)的函數(shù)解析式;

(3)為了美化環(huán)境,花園小區(qū)計(jì)劃到該基地購(gòu)買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時(shí),總費(fèi)用最少,最少費(fèi)用是多少元?

【答案】(1)購(gòu)買太陽花35盆,繡球花25;(2)繡球花的付款金額y(元)關(guān)于購(gòu)買量x(盆)的函數(shù)解析式是:y=;(3)太陽花30盆,繡球花60盆時(shí),總費(fèi)用最少,最少費(fèi)用是700元.

【解析】試題分析:(1)根據(jù)題意列出方程組求解即可;

(2)首先根據(jù)總價(jià)=單價(jià)×數(shù)量,求出太陽花的付款金額y(元)關(guān)于購(gòu)買量x(盆)的函數(shù)解析式;然后分兩種情況:①一次購(gòu)買的繡球花不超過20盆;②一次購(gòu)買的繡球花超過20盆;根據(jù)總價(jià)=單價(jià)×數(shù)量,求出繡球花的付款金額y(元)關(guān)于購(gòu)買量x(盆)的函數(shù)解析式即可.

(3)首先太陽花數(shù)量不超過繡球花數(shù)量的一半,可得太陽花數(shù)量不超過兩種花數(shù)量的,即太陽花數(shù)量不超過30盆,所以繡球花的數(shù)量不少于60盆;然后設(shè)太陽花的數(shù)量是x盆,則繡球花的數(shù)量是90-x盆,根據(jù)總價(jià)=單價(jià)×數(shù)量,求出購(gòu)買兩種花的總費(fèi)用是多少,進(jìn)而判斷出兩種花卉各買多少盆時(shí),總費(fèi)用最少,最少費(fèi)用是多少元即可.

試題解析:(1)設(shè)購(gòu)買太陽花x盆,繡球花y盆,根據(jù)題意得:

解得,

故購(gòu)買太陽花35盆,繡球花25.

(2)太陽花的付款金額y(元)關(guān)于購(gòu)買量x(盆)的函數(shù)解析式是:y=6x;

①一次購(gòu)買的繡球花不超過20盆時(shí),

付款金額y(元)關(guān)于購(gòu)買量x(盆)的函數(shù)解析式是:y=10x(x≤20);

②一次購(gòu)買的繡球花超過20盆時(shí),

付款金額y(元)關(guān)于購(gòu)買量x(盆)的函數(shù)解析式是:

y=10×20+10×0.8×(x-20)

=200+8x-160

=8x+40

綜上,可得

繡球花的付款金額y(元)關(guān)于購(gòu)買量x(盆)的函數(shù)解析式是:

y=

(3)根據(jù)題意,可得太陽花數(shù)量不超過:90×=30(),

所以繡球花的數(shù)量不少于:90-30=60(盆),

設(shè)太陽花的數(shù)量是x盆,則繡球花的數(shù)量是90-x盆,購(gòu)買兩種花的總費(fèi)用是y元,

x≤30,

y=6x+[8(90-x)+40]

=6x+[760-8x]

=760-2x

因?yàn)?/span>x≤30,

所以當(dāng)x=30時(shí),

ymin=760-2×30=700(元),

即太陽花30盆,繡球花60盆時(shí),總費(fèi)用最少,最少費(fèi)用是700元.

答:太陽花30盆,繡球花60盆時(shí),總費(fèi)用最少,最少費(fèi)用是700元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)EEFABPQF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)當(dāng)點(diǎn)EAD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);

①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長(zhǎng);

②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,ACBDCE均為等腰直角三角形,ACB=90°,B,C,D在一條直線上.

填空:線段AD,BE之間的關(guān)系為 .

(2)拓展探究

如圖2,ACBDCE均為等腰直角三角形,ACB=DCE=90°,請(qǐng)判斷AD,BE的關(guān)系,并說明理由.

(3)解決問題

如圖3,線段PA=3,點(diǎn)B是線段PA外一點(diǎn),PB=5,連接AB,AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,隨著點(diǎn)B的位置的變化,直接寫出PC的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD中,ACBDC,點(diǎn)EAC上一點(diǎn),連結(jié)BE、DE,DE的延長(zhǎng)線交ABF,已知DE=ABCAD=45°

1)求證:DFAB

2)利用圖中陰影部分面積完成勾股定理的證明,已知:如圖,在△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,線段AC6cm,線段BC15cm,點(diǎn)MAC的中點(diǎn),在CB上取一點(diǎn)N,使得CNNB12,求MN的長(zhǎng).

2)如圖2,若C為線段AB上任意一點(diǎn),滿足AC+CBacmM、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?并說明理由;

3)若C在線段AB的延長(zhǎng)線上的一點(diǎn),且滿足ACBCbcm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2﹣2x+c與直線y=﹣x+3分別交于x軸、y軸上的B、C兩點(diǎn),拋物線的頂點(diǎn)為點(diǎn)D,聯(lián)結(jié)CDx軸于點(diǎn)E.

(1)求拋物線的解析式以及點(diǎn)D的坐標(biāo);

(2)求tanBCD;

(3)點(diǎn)P在直線BC上,若∠PEB=BCD,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,將一張矩形紙片 ABCD 沿著對(duì)角線 BD 向上折疊,頂點(diǎn) C 落到點(diǎn) E 處,BEAD 于點(diǎn) F.

1)求證:BDF 是等腰三角形;

2)如圖 2,過點(diǎn) D DGBE,交 BC 于點(diǎn) G,連接 FG BD 于點(diǎn) O

①判斷四邊形 BFDG 的形狀,并說明理由;

②若 AD=AB+2,BD=10,求四邊形 BFDG 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把四張形狀大小完全相同的小正方形卡片(如圖1)不重疊地放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為mcm,寬為ncm)的盒子的底部(如圖2),盒子底面未被卡片覆蓋的部分用陰影表示.則圖2中兩塊陰影部分的周長(zhǎng)和是(

A. 4mcmB. 4ncmC. 2(m+n)cmD. 4(mn)cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是16,點(diǎn)E在邊AB上,AE=3,點(diǎn)F是邊BC上不與點(diǎn)B,C重合的一個(gè)動(dòng)點(diǎn),把EBF沿EF折疊,點(diǎn)B落在B′處.若CDB′恰為等腰三角形,則DB′的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案