【題目】如圖 1,將一張矩形紙片 ABCD 沿著對角線 BD 向上折疊,頂點 C 落到點 E 處,BE交AD 于點 F.
(1)求證:△BDF 是等腰三角形;
(2)如圖 2,過點 D 作 DG∥BE,交 BC 于點 G,連接 FG 交 BD 于點 O.
①判斷四邊形 BFDG 的形狀,并說明理由;
②若 AD=AB+2,BD=10,求四邊形 BFDG 的面積.
【答案】(1)證明見解析;(2)①四邊形BFDG是菱形;理由見解析;②.
【解析】
(1)根據(jù)折疊的性質(zhì)可得∠DBC=∠DBE,根據(jù)矩形的性質(zhì)可得∠DBC=∠ADB,等量代換可得∠DBE=∠ADB,問題得證;
(2)①根據(jù)矩形的性質(zhì)及第一問證得鄰邊相等可得四邊形BFDG是菱形;
②在△ABD中根據(jù)勾股定理列一元二次方程求出AB,然后在直角△ABF中設(shè)DF=BF=x,利用勾股定理構(gòu)造方程求解,最后根據(jù)菱形面積公式計算即可.
解:(1)證明:如圖1,
根據(jù)折疊的性質(zhì)可得:∠DBC=∠DBE,
∵AD∥BC,
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,
∴DF=BF,
∴△BDF是等腰三角形;
(2)①∵四邊形ABCD是矩形,
∴AD∥BC,
又∵DG∥BE,
∴四邊形BFDG是平行四邊形,
∵DF=BF,
∴四邊形BFDG是菱形;
②由勾股定理得:AB2+AD2=BD2,即AB2+(AB+2)2=100,
解得:AB=6(負值已舍去),
∴AD=AB+2=8,
設(shè)DF=BF=x,則AF=ADDF=8x.
在直角△ABF中,AB2+AF2=BF2,即62+(8x)2=x2,
解得x=,
∴S四邊形 BFDG=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在等腰△ABC中,AB=AC=,BC=4,點D從A出發(fā)以每秒個單位的速度向點B運動,同時點E從點B出發(fā)以每秒4個單位的速度向點C運動,在DE的右側(cè)作∠DEF=∠B,交直線AC于點F,設(shè)運動的時間為t秒,則當△ADF是一個以AD為腰的等腰三角形時,t的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016湖北省黃岡市)如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象在第四象限的交點為點B.
(1)求直線AB的解析式;
(2)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.
【答案】(1)y=x﹣4;(2)P(4,0).
【解析】試題分析:(1)先把A(1,a)代入反比例函數(shù)解析式求出a得到A點坐標,再解方程組,得B點坐標,然后利用待定系數(shù)法求AB的解析式;
(2)直線AB交x軸于點Q,如圖,利用x軸上點的坐標特征得到Q點坐標,則PA﹣PB≤AB(當P、A、B共線時取等號),于是可判斷當P點運動到Q點時,線段PA與線段PB之差達到最大,從而得到P點坐標.
試題解析:(1)把A(1,a)代入得a=﹣3,則A(1,﹣3),解方程組: ,得: 或,則B(3,﹣1),設(shè)直線AB的解析式為y=kx+b,把A(1,﹣3),B(3,﹣1)代入得: ,解得: ,所以直線AB的解析式為y=x﹣4;
(2)直線AB交x軸于點Q,如圖,當y=0時,x﹣4=0,解得x=4,則Q(4,0),因為PA﹣PB≤AB(當P、A、B共線時取等號),所以當P點運動到Q點時,線段PA與線段PB之差達到最大,此時P點坐標為(4,0).
考點:反比例函數(shù)與一次函數(shù)的交點問題.
【題型】解答題
【結(jié)束】
22
【題目】成都三圣鄉(xiāng)花卉基地出售兩種盆栽花卉:太陽花6元/盆,繡球花10元/盆.若一次購買的繡球花超過20盆時,超過20盆部分的繡球花價格打8折.
(1)若小張家花臺綠化需用60盆兩種盆栽花卉,小張爸爸給他460元錢去購買,問兩種花卉各買了多少盆?
(2)分別寫出兩種花卉的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式;
(3)為了美化環(huán)境,花園小區(qū)計劃到該基地購買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時,總費用最少,最少費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為使學生及時穿上合身的校服,現(xiàn)提前對該校八年級四班學生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為 6 個型號)
根據(jù)以上信息,解答下列問題(請寫出每個空所需的求解步驟)
(1)該班共有多少名學生?其中穿 175 型號校服的學生有多少?
(2)在條形統(tǒng)計圖中,請把空缺部分補充完整;(提醒:有兩處需要補充)
(3)在扇形統(tǒng)計圖中,185 型校服所對應(yīng)的扇形圓心角的大小是 度;
(4)該班學生所穿校服型號的眾數(shù)是 型,中位數(shù)是 型。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我省某旅游景點的旅客人數(shù)逐年增加,據(jù)旅游部門統(tǒng)計,2016年約為120萬人次,預(yù)計2018年約為170萬人次,設(shè)游客人數(shù)年平均增長率為x,則下列方程中正確的是( 。
A. 120(1+x)=170 B. 170(1﹣x)=120
C. 120(1+x)2=170 D. 120+120(1+x)+120(1+x)2=170
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點為E,該拋物線與x軸交于A(﹣1,0)、B(3,0)兩點,與y軸交于點C,直線y=﹣x+1與y軸交于點D.
(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD交于點O,點E,點F在BD上,且 BE=DF 連接AE并延長,交BC于點G,連接CF并延長,交AD于點H.
(1)求證:△AOE≌△COF;
(2)若AC平分∠HAG,求證:四邊形AGCH是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2為邊長的正方形DEFG的一邊GD在直線AB上,且點D與點A重合,現(xiàn)將正方形DEFG沿A﹣B的方向以每秒1個單位的速度勻速運動,當點D與點B重合時停止,則在這個運動過程中,正方形DEFG與△ABC的重合部分的面積S與運動時間t之間的函數(shù)關(guān)系圖象大致是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com