【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG②BG=CG③AG∥CF④S△FGC=3⑤∠AGB+∠AED=135°.其中正確的個(gè)數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

【答案】C

【解析】

根據(jù)對(duì)折變換的性質(zhì) 正方形的性質(zhì)可證明①,在直角三角形ECG中通過計(jì)算可證明②,根據(jù)平行線的判定可以證明③,可根據(jù)三角形相似求出相似比繼而求得三角形FGC的面積進(jìn)行比較,可由五邊形的內(nèi)角和求出

∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,

∴Rt△ABG≌Rt△AFG(HL),故①正確.

∵EF=DE= CD=2,設(shè)BG=FG=x,則CG=6﹣x.

在直角△ECG中,根據(jù)勾股定理,得(6﹣x)2+42=(x+2)2

解得x=3.

∴BG=3=6﹣3=GC,故②正確.

∵CG=BG=GF,

∴△FGC是等腰三角形,

∴∠GFC=∠GCF,

又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,

∴∠AGB=∠AGF=∠GFC=∠GCF,

∴AG∥CF,故③正確,

FFH⊥DC,

∵BC⊥DH,

∴FH∥GC,

∴△EFH∽△EGC,

=

EF=DE=2,GF=3,

∴EG=5,

∴△EFH∽△EGC,

∴相似比為: ==

S△FGCS△GCES△FEC ×3×4- ×4×( ×3)= 3.故④錯(cuò)誤,

在五邊形ABGED中,∠BGE+∠GED=540°﹣90°﹣90°﹣90°=270°,

2∠AGB+2∠AED=270°,

∴∠AGB+∠AED=135°,故⑤正確

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,C=90°,DCB上,EAB之中點(diǎn),AD、CE相交于F,且AD=DB.若∠B=20°,則∠DFE=( )

A. 40° B. 50° C. 60° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為4cm,E,F(xiàn)分別為邊DC,BC上的點(diǎn),BF=1cm,CE=2cm,BE,DF相交于點(diǎn)G,求四邊形CEGF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDAB相交,BAC=38°

1)如圖①,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的大;

2)如圖②,過點(diǎn)D作⊙O的切線,與AB的延長(zhǎng)線交于點(diǎn)P,若DPAC,求∠OCD的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:

(1)這次被調(diào)查的學(xué)生共有 人;

(2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店張阿姨以每斤4元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤6元的價(jià)格出售,每天可售出150斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出30斤,為保證每天至少售出360斤,張阿姨決定降價(jià)銷售.

(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是   斤(用含x的代數(shù)式表示);

(2)銷售這種水果要想每天盈利450元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC是邊長(zhǎng)3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),解答問題:當(dāng)t為何值時(shí),△PBQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,⊿ABC中,AB=AC,以AB為直徑的⊙OBC于點(diǎn)P,PD⊥AC于點(diǎn)D

1)求證:PD⊙O的切線.

2)若∠CAB=120°,AB=2,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價(jià)促銷的原則,使生產(chǎn)的玩具能夠及時(shí)售出,據(jù)市場(chǎng)調(diào)查:每個(gè)玩具按元銷售時(shí),每天可銷售個(gè);若銷售單價(jià)每降低元,每天可多售出個(gè).已知每個(gè)玩具的固定成本為元,問這種玩具的銷售單價(jià)為多少元時(shí),廠家每天可獲利潤(rùn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案