【題目】數(shù)學(xué)活動課上,小聰同學(xué)擺弄著自己剛購買的一套三角板,將兩塊直角三角板的直角頂點C疊放在一起,然后轉(zhuǎn)動三角板,在轉(zhuǎn)動過程中,請解決以下問題:
(1)如圖(1):當(dāng)∠DCE=30°時,∠ACB+∠DCE= ,若∠DCE為任意銳角時,你還能求出∠ACB與∠DCE的數(shù)量關(guān)系嗎?若能,請求出;若不能,請說明理由.
(2)當(dāng)轉(zhuǎn)動到圖(2)情況時,∠ACB與∠DCE有怎樣的數(shù)量關(guān)系?請說明理由.
【答案】(1)∠ACB+∠DCE=180°(2)∠ACB+∠DCE=180°
【解析】
(1)當(dāng)∠DCE=30°時,利用互余計算出∠BCD,然后可得到∠ACB+∠DCE的度數(shù);若∠DCE為任意銳角時,利用∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,然后計算出∠ACB+∠DCE=180°;
(2)利用周角定義得到∠ACD+∠ECB+∠ACB+∠DCE=360°,所以∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=180°.
(1)∠ACB+∠DCE=180°;若∠DCE為任意銳角時,∠ACB+∠DCE=180°.理由如下:
∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACB+∠DCE=∠ACE+∠DCE+∠BCD+∠DCE=90°+90°=180°;
(2)∠ACB+∠DCE=180°.理由如下:
∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達點E,此時他仰望兩棵大樹的頂點A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列推理過程,將空白部分補充完整.
(1)如圖1,∠ABC=∠A1B1C1,BD,B1D1分別是∠ABC,∠A1B1C1的角平分線,對∠DBC=∠D1B1C1進行說理.
理由:因為BD,B1D1分別是∠ABC,∠A1B1C1的角平分線
所以∠DBC= ,∠D1B1C1= (角平分線的定義)
又因為∠ABC=∠A1B1C1
所以∠ABC=∠A1B1C1
所以∠DBC=∠D1B1C1( )
(2)如圖2,EF∥AD,∠1=∠2,∠B=40°,求∠CDG的度數(shù).
因為EF∥AD,
所以∠2= ( )
又因為∠1=∠2 (已知)
所以∠1= (等量代換)
所以AB∥GD( )
所以∠B= ( )
因為∠B=40°(已知)
所以∠CDG= (等量代換)
(3)下面是“積的乘方的法則“的推導(dǎo)過程,在括號里寫出每一步的依據(jù).
因為(ab)n=( )
=( )
=anbn( )
所以(ab)n=anbn.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y= 的圖象上.若點B在反比例函數(shù)y= 的圖象上,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD的對角線AC、BD的長分別為10厘米、6厘米,且AC與BD互相垂直,順次連接四邊形ABCD四邊的中點E、F、G、H得四邊形EFGH,則四邊形EFGH的面積為_____平方厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有三個點A、B、C,完成下列問題:
(1)將點B向右移動六個單位長度到點D,在數(shù)軸上表示出點D.
(2)在數(shù)軸上找到點E,使點E為BA的中點(E到A、C兩點的距離相等),井在數(shù)軸上標(biāo)出點E表示的數(shù),求出CE的長.
(3)O為原點,取OC的中點M,分OC分為兩段,記為第一次操作:取這兩段OM、CM的中點分別為了N1、N2,將OC分為4段,記為第二次操作,再取這兩段的中點將OC分為8段,記為第三次操作,第六次操作后,OC之間共有多少個點?求出這些點所表示的數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于有理數(shù)a、b,定義運算:ab=a×b-a-b+1.
(1)計算5(-2)與(-2)5的值,并猜想ab與ba的大小關(guān)系;
(2)求(-3) [4(-2)]的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com