【題目】已知:如圖1,∠ACG=90°,AC=2,點(diǎn)B為CG邊上的一個(gè)動(dòng)點(diǎn),連接AB,將△ACB沿AB邊所在的直線翻折得到△ADB,過(guò)點(diǎn)D作DF⊥CG于點(diǎn)F.
(1)當(dāng)BC= 時(shí),判斷直線FD與以AB為直徑的⊙O的位置關(guān)系,并加以證明;
(2)如圖2,點(diǎn)B在CG上向點(diǎn)C運(yùn)動(dòng),直線FD與以AB為直徑的⊙O交于D、H兩點(diǎn),連接AH,當(dāng)∠CAB=∠BAD=∠DAH時(shí),求BC的長(zhǎng).
【答案】(1)直線FD與以AB為直徑的⊙O相切,理由見(jiàn)解析;(2) .
【解析】試題分析:(1)根據(jù)已知及切線的判定證明得,直線FD與以AB為直徑的⊙O相切;
(2)根據(jù)圓內(nèi)接四邊形的性質(zhì)及直角三角形的性質(zhì)進(jìn)行分析,從而求得BC的長(zhǎng).
試題解析:
(1)判斷:直線FD與以AB為直徑的⊙O相切.
證明:如圖,
作以AB為直徑的⊙O;
∵△ADB是將△ACB沿AB邊所在的直線翻折得到的,
∴△ADB≌△ACB,
∴∠ADB=∠ACB=90°.
∵O為AB的中點(diǎn),連接DO,
∴OD=OB=AB,
∴點(diǎn)D在⊙O上.
在Rt△ACB中,BC=,AC=2;
∴tan∠CAB==,
∴∠CAB=∠BAD=30°,
∴∠ABC=∠ABD=60°,
∴△BOD是等邊三角形.
∴∠BOD=60°.
∴∠ABC=∠BOD,
∴FC∥DO.
∵DF⊥CG,
∴∠ODF=∠BFD=90°,
∴OD⊥FD,
∴FD為⊙O的切線.
(2)延長(zhǎng)AD交CG于點(diǎn)E,
同(1)中的方法,可證點(diǎn)C在⊙O上;
∴四邊形ADBC是圓內(nèi)接四邊形.
∴∠FBD=∠1+∠2.
同理∠FDB=∠2+∠3.
∵∠1=∠2=∠3,
∴∠FBD=∠FDB,
又∠DFB=90°.
∴EC=AC=2.
設(shè)BC=x,則BD=BC=x,
∵∠EDB=90°,
∴EB=x.
∵EB+BC=EC,
∴x+x=2,
解得x=2﹣2,
∴BC=2﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小嘉全班在操場(chǎng)上固坐成一圈。若以班長(zhǎng)為第1人,依順時(shí)針?lè)较蛩闳藬?shù),小嘉是第27人;若以班長(zhǎng)為第1人,依逆時(shí)針?lè)较蛩闳藬?shù),小嘉是第31人.求小嘉班上共有多少人( )
A.56B.57C.58D.59
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,4),B(2,4),C(3,﹣1).
(1)試在平面直角坐標(biāo)系中,標(biāo)出A、B、C三點(diǎn);
(2)求△ABC的面積.
(3)若△A1B1C1與△ABC關(guān)于x軸對(duì)稱,寫出A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織“國(guó)學(xué)經(jīng)典”誦讀比賽,參賽10名選手的得分情況如表所示:
分?jǐn)?shù)/分 | 80 | 85 | 90 | 95 |
人數(shù)/人 | 3 | 4 | 2 | 1 |
那么,這10名選手得分的中位數(shù)和眾數(shù)分別是( 。
A.85.5和80B.85.5和85C.85和82.5D.85和85
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P向右平移5個(gè)單位長(zhǎng)度后得到的點(diǎn)的坐標(biāo)為 (-1,3),則平移前點(diǎn)P的坐標(biāo)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為半圓內(nèi)一點(diǎn),O為圓心,直徑AB長(zhǎng)為2cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時(shí)針旋轉(zhuǎn)至△B′OC′,點(diǎn)C′在OA上,則邊BC掃過(guò)區(qū)域(圖中陰影部分)的面積為_______cm2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com