(2013•南昌)如圖,在平面直角坐標(biāo)系中,以點(diǎn)O為圓心,半徑為2的圓與y軸交于點(diǎn)A,點(diǎn)P(4,2)是⊙O外一點(diǎn),連接AP,直線PB與⊙O相切于點(diǎn)B,交x軸于點(diǎn)C.
(1)證明PA是⊙O的切線;
(2)求點(diǎn)B的坐標(biāo).
分析:(1)由AO=2,P的縱坐標(biāo)為2,得到AP與x軸平行,即PA與AO垂直,即可得到AP為圓O的切線;
(2)連接OP,OB,過B作BQ垂直于OC,由切線長定理得到PA=PB=4,PO為角平分線,進(jìn)而得到一對(duì)角相等,根據(jù)AP與OC平行,利用兩直線平行內(nèi)錯(cuò)角相等得到一對(duì)角相等,等量代換并利用等角對(duì)等邊得到OC=CP,設(shè)OC=x,BC=BP-PC=4-x,OB=2,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出OC與BC的長,在直角三角形OBC中,利用面積法求出BQ的長,再利用勾股定理求出OQ的長,根據(jù)B在第四象限,即可求出B的坐標(biāo).
解答:(1)證明:∵圓O的半徑為2,P(4,2),
∴AP⊥OA,
則AP為圓O的切線;
(2)解:連接OP,OB,過B作BQ⊥OC,
∵PA、PB為圓O的切線,
∴∠APO=∠BPO,PA=PB=4,
∵AP∥OC,
∴∠APO=∠POC,
∴∠BPO=∠POC,
∴OC=CP,
在Rt△OBC中,設(shè)OC=PC=x,則BC=PB-PC=4-x,OB=2,
根據(jù)勾股定理得:OC2=OB2+BC2,即x2=4+(4-x)2,
解得:x=2.5,
∴BC=4-x=1.5,
∵S△OBC=
1
2
OB•BC=
1
2
OC•BQ,即OB•BC=OC•BQ,
∴BQ=
2×1.5
2.5
=1.2,
在Rt△OBQ中,根據(jù)勾股定理得:OQ=
OB2-BQ2
=1.6,
則B坐標(biāo)為(1.6,-1.2).
點(diǎn)評(píng):此題考查了切線的性質(zhì)與判定,坐標(biāo)與圖形性質(zhì),勾股定理,三角形的面積求法,平行線的性質(zhì),以及切線長定理,熟練掌握切線的性質(zhì)與判定是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南昌)如圖,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南昌)如圖,正六邊形ABCDEF中,AB=2,點(diǎn)P是ED的中點(diǎn),連接AP,則AP的長為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南昌)如圖△ABC中,∠A=90°,點(diǎn)D在AC邊上,DE∥BC,若∠1=155°,則∠B的度數(shù)為
65°
65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南昌)如圖AB是半圓的直徑,圖1中,點(diǎn)C在半圓外;圖2中,點(diǎn)C在半圓內(nèi),請(qǐng)僅用無刻度的直尺按要求畫圖.
(1)在圖1中,畫出△ABC的三條高的交點(diǎn);
(2)在圖2中,畫出△ABC中AB邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南昌)如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=
kx
(x>0)的圖象和矩形ABCD在第一象限,AD平行于x軸,且AB=2,AD=4,點(diǎn)A的坐標(biāo)為(2,6).
(1)直接寫出B、C、D三點(diǎn)的坐標(biāo);
(2)若將矩形向下平移,矩形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,猜想這是哪兩個(gè)點(diǎn),并求矩形的平移距離和反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案