【題目】如圖,在△ABC中,∠ABC90°,AB4cm,BC3cm,動點P,Q分別從點AB同時開始移動(移動方向如圖所示),點P的速度為 cm/s,點Q的速度為1cm/s,點Q移動到點C后停止,點P也隨之停止運動,若使△PBQ的面積為,則點P運動的時間是( 。

A. 2sB. 3sC. 4sD. 5s

【答案】B

【解析】

設出動點P,Q運動t秒,能使△PBQ的面積為,用t分別表示出BPBQ的長,利用三角形的面積計算公式即可解答.

解:設動點P,Q運動t秒后,能使△PBQ的面積為,

BP為(4tcm,BQtcm,由三角形的面積計算公式列方程得,

×(4t)×t,

解得t13,t25(當t5時,BQ10,不合題意,舍去).

∴動點P,Q運動3秒時,能使△PBQ的面積為

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(﹣1,0)及點B.

(1)求二次函數(shù)與一次函數(shù)的解析式;

(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程有兩個正整數(shù)根是正整數(shù)的三邊a、b、c滿足,

求:的值;

的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設長方形地面,請觀察下列圖形,并解答有關問題:

1)在第n個圖中,第一橫行共    塊瓷磚,第一豎列共有    塊瓷磚;(均用含n的代數(shù)式表示)鋪設地面所用瓷磚的總塊數(shù)為   (用含n的代數(shù)式表示,n表示第n個圖形)

2)上述鋪設方案,鋪一塊這樣的長方形地面共用了506塊瓷磚,求此時n的值;

3)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請通過計算加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a10m),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關系式;

2)如果要圍成面積為45m2的花圃,AB的長是多少米?

3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形 ACDE 是證明勾股定理時用到的一個圖形,a 、bcRtABCRtBED 的邊長,已知,這時我們把關于 x 的形如二次方程稱為勾系一元二次方程

請解決下列問題:

(1)寫出一個勾系一元二次方程;

(2)求證:關于 x勾系一元二次方程,必有實數(shù)根;

(3)若 x 1勾系一元二次方程的一個根,且四邊形 ACDE 的周長是6,求ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐操作

如圖,是直角三角形,,利用直尺和圓規(guī)按下列要求作圖,并在圖中表明相應的字母.(保留作圖痕跡,不寫作法)

1)①作的平分線,交于點;②以為圓心,為半徑作圓.

綜合運用

在你所作的圖中,

2與⊙的位置關系是   ;(直接寫出答案)

3)若,,求⊙的半徑.

4)在(3)的條件下,求以為軸把ABC旋轉(zhuǎn)一周得到的圓錐的側面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,點E、F分別在BCCD上,AE = AF

1)求證:BE = DF;

2)連接ACEF于點O,延長OC至點M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列結論:

其中正確的個數(shù)是( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習冊答案