【題目】如圖,ACABCD的對(duì)角線,∠BAC90°ABC的邊AB,ACBC的長(zhǎng)是三個(gè)連續(xù)偶數(shù),EF分別是邊AB,BC上的動(dòng)點(diǎn),且EFBC,將BEF沿著EF折疊得到PEF,連接AP,DP.若APD為直角三角形時(shí),BF的長(zhǎng)為_____

【答案】

【解析】

設(shè)直角三角形ABC的三邊長(zhǎng)分別為x2、x、x+2,利用勾股定理可得(x+22x2+x22,解方程即可求出三邊長(zhǎng)為6,8,10.分三種情況:①當(dāng)∠PAD90°,由平行四邊形的性質(zhì)得出CDAB6,ADBC10ADBC,證明△ABP∽△CBA,求出BP,由軸對(duì)稱的性質(zhì)即可得出結(jié)果;②∠APD90°,當(dāng)點(diǎn)PC重合時(shí),得出該情況不成立;③當(dāng)點(diǎn)PC不重合時(shí),∠APD90°,作AGBCG,則EFAG重合,BF

解:設(shè)直角三角形ABC的三邊長(zhǎng)分別為x2、x、x+2,根據(jù)題意得:

x+22x2+x22,

解得x10(舍去),x28

所以斜邊長(zhǎng)BCx+210

AB6,AC8

分三種情況:

①當(dāng)∠PAD90°,如圖1所示:

∵四邊形ABCD是平行四邊形,

CDAB6ADBC10,ADBC,

∴∠APB=∠PAD90°

∵∠B=∠B,

∴△ABP∽△CBA,

,即,

解得:BP,

EFBC,△BEF與△PEF關(guān)于直線EF對(duì)稱,

BFPFBP;

②當(dāng)∠APD90°時(shí),點(diǎn)PC重合時(shí),如圖2所示:

ABCD,

∴∠APD=∠ACD=∠BAC90°,

EAB上,EA重合,而AB≠AC,

則△BEF與△PEF關(guān)于直線EF不對(duì)稱,

∴該情況不存在;

③當(dāng)點(diǎn)PC不重合時(shí),∠APD90°,如圖3所示:

AGBCG,則EFAG重合,BF;

綜上所述,若△APD是直角三角形,則BF的長(zhǎng)為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一枚木質(zhì)中國(guó)象棋子“兵”從一定高度落下,落地后“兵”字面可能朝上,也可能朝下.為了估計(jì)“兵”字面朝上的概率,某實(shí)驗(yàn)小組做了棋子下擲實(shí)驗(yàn)數(shù)據(jù)如下表:

實(shí)驗(yàn)次數(shù)

20

60

100

120

140

160

500

1000

2000

5000

“兵”字面朝上次數(shù)

14

38

52

66

78

88

280

550

1100

2750

“兵”字面朝上頻率

0.7

0.63

0.52

0.55

0.56

0.55

0.56

0.55

0.55

0.55

下面有三個(gè)推斷:①投擲1000次時(shí),“兵”字面朝上的次數(shù)是550,所以“兵”字面朝上的概率是0.55;②隨著實(shí)驗(yàn)次數(shù)的增加,“兵”字面朝上的頻率總在0.55附近,顯示出一定的穩(wěn)定性,可以估計(jì)“兵”字面上的概率是0.55;③當(dāng)實(shí)驗(yàn)次數(shù)為200次時(shí),“兵”字面朝上的頻率一定是0.55.其中合理的是______.(填序號(hào)①、②、③)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解學(xué)生每周參加家務(wù)勞動(dòng)的情況,隨機(jī)調(diào)查了該校部分學(xué)生每周參加家務(wù)勞動(dòng)的時(shí)間.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

1)本次接受調(diào)查的學(xué)生人數(shù)為___________,,圖①中m的值為_________;

2)求統(tǒng)計(jì)的這組每周參加家務(wù)勞動(dòng)時(shí)間數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

3)根據(jù)統(tǒng)計(jì)的這組每周參加家務(wù)勞動(dòng)時(shí)間的樣本數(shù)據(jù),若該校共有800名學(xué)生,估計(jì)該校每周參加家務(wù)勞動(dòng)的時(shí)間大于的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為A4,0),與y軸的交點(diǎn)為B,過(guò)A、B的直線為

1)求二次函數(shù)的解析式及點(diǎn)B的坐標(biāo);

2)由圖象寫(xiě)出滿足的自變量x的取值范圍;

3)在兩坐標(biāo)軸上是否存在點(diǎn)P,使得△ABP是以AB為底邊的等腰三角形?若存在,求出P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑AB=10,弦AC=6,ACB的平分線交⊙OD,過(guò)點(diǎn)DDEABCA的延長(zhǎng)線于點(diǎn)E,連接AD,BD

(1)由ABBD,圍成的曲邊三角形的面積是 ;

(2)求證:DE是⊙O的切線;

(3)求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】河南靈寶蘋(píng)果為中華蘋(píng)果之翹楚,被譽(yù)為“中華名果”.某水果超市計(jì)劃從靈寶購(gòu)進(jìn)“紅富士”與“新紅星”兩種品種的蘋(píng)果.已知2箱紅富士蘋(píng)果的進(jìn)價(jià)與3箱新紅星蘋(píng)果的進(jìn)價(jià)的和為282元,且每箱紅富士蘋(píng)果的進(jìn)價(jià)比每箱新紅星蘋(píng)果的進(jìn)價(jià)貴6元.

1)求每箱紅富士蘋(píng)果的進(jìn)價(jià)與每箱新紅星蘋(píng)果的進(jìn)價(jià)分別是多少元?

2)如果購(gòu)進(jìn)紅富士蘋(píng)果有優(yōu)惠,優(yōu)惠方案是:購(gòu)進(jìn)紅富士蘋(píng)果超過(guò)20箱,超出部分可以享受七折優(yōu)惠.若購(gòu)進(jìn),且為整數(shù))箱紅富士蘋(píng)果需要花費(fèi)元,求之間的函數(shù)關(guān)系式;

3)在(2)的條件下,超市決定在紅富士、新紅星兩種蘋(píng)果中選購(gòu)其中一種,且數(shù)量超過(guò)20箱,請(qǐng)你幫助超市選擇購(gòu)進(jìn)哪種蘋(píng)果更省錢(qián).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同學(xué):你去過(guò)黃山嗎?在黃山的上山路上,有一些斷斷續(xù)續(xù)的臺(tái)階,如圖8是其中的甲、乙段臺(tái)階路的示意圖,圖8中的數(shù)字表示每一級(jí)臺(tái)階的高度(單位:cm).并且數(shù)d,e,e,c,c,d的方差p,數(shù)據(jù)b,d,g,f,a,h的方差q,(10cmabcdefgh20cm, pq),請(qǐng)你用所學(xué)過(guò)的有關(guān)統(tǒng)計(jì)知識(shí)(平均數(shù)、中位數(shù)、方差和極差)回答下列問(wèn)題:

1)兩段臺(tái)階路有哪些相同點(diǎn)和不同點(diǎn)?

2)哪段臺(tái)階路走起來(lái)更舒服?為什么?

3)為方便游客行走,需要重新整修上山的小路.對(duì)于這兩段臺(tái)階路,在臺(tái)階數(shù)不變的情況下,請(qǐng)你提出合理的整修建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,E是邊BC上一點(diǎn),連接AE,過(guò)點(diǎn)DDFAE于點(diǎn)F

1)若AEDA,求證:△ABE≌△DFA

2)若AB6,AD8,且EBC中點(diǎn).

①如圖2,連接CF,求sinDCF的值.

②如圖3,連接ACDF于點(diǎn)M,求CMAM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=8,BC=10,以B為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交BABC于點(diǎn)MN,再分別以MN為圓心,大于MN長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)BP并延長(zhǎng)交AC于點(diǎn)D,若△BDC的面積為20,則△ABD的面積為( )

A.20B.18C.16D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案