【題目】如圖,在中,,,,,是的平分線.若,分別是和上的動點(diǎn),則的最小值是__________.
【答案】
【解析】
過點(diǎn)C作CM⊥AB交AB于點(diǎn)M,交AD于點(diǎn)P,過點(diǎn)P作PQ⊥AC于點(diǎn)Q,由AD是∠BAC的平分線.得出PQ=PM,這時(shí)PC+PQ有最小值,即CM的長度,運(yùn)用勾股定理求出AB,再運(yùn)用S△ABC=ABCM=ACBC,得出CM的值,即PC+PQ的最小值.
如圖,過點(diǎn)C作CM⊥AB交AB于點(diǎn)M,交AD于點(diǎn)P,過點(diǎn)P作PQ⊥AC于點(diǎn)Q,
∵AD是∠BAC的平分線.
∴PQ=PM,這時(shí)PC+PQ有最小值,即CM的長度,
∵AC=6,AB=10,∠ACB=90°,BC=8,S△ABC=ABCM=ACBC,
∴CM==,
即PC+PQ的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點(diǎn)P從點(diǎn)A開始沿折線AC-CB-BA運(yùn)動,點(diǎn)P在AC,CB,BA邊上運(yùn)動的速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向移動,移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點(diǎn),點(diǎn)P與直線l同時(shí)出發(fā),設(shè)運(yùn)動的時(shí)間為t秒,當(dāng)點(diǎn)P第一次回到點(diǎn)A時(shí),點(diǎn)P和直線l同時(shí)停止運(yùn)動.
(1)當(dāng)t=5秒時(shí),點(diǎn)P走過的路徑長為_________;當(dāng)t=_________秒時(shí),點(diǎn)P與點(diǎn)E重合;
(2)當(dāng)點(diǎn)P在AC邊上運(yùn)動時(shí),連結(jié)PE,并過點(diǎn)E作AB的垂線,垂足為H. 若以C、P、E為頂點(diǎn)的三角形與△EFH相似,試求線段EH的值;
(3)當(dāng)點(diǎn)P在折線AC-CB-BA上運(yùn)動時(shí),作點(diǎn)P關(guān)于直線EF的對稱點(diǎn)Q.在運(yùn)動過程中,若形成的四邊形PEQF為菱形,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對稱軸為直線x=2.下列結(jié)論:abc<0;②9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2;④﹣<a<﹣.其中正確結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列哪個條件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)G在直徑DF的延長線上,∠D=∠G=30°.
(1)求證:CG是⊙O的切線 (2)若CD=6,求GF的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,且與AB的延長線交于點(diǎn)E.點(diǎn)C是弧BF的中點(diǎn).
(1)求證:AD⊥CD;
(2)若∠CAD=30°.⊙O的半徑為3,一只螞蟻從點(diǎn)B出發(fā),沿著BE--EC--弧CB爬回至點(diǎn)B,求螞蟻爬過的路程(π≈3.14,≈1.73,結(jié)果保留一位小數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)E與正方形ABCD的頂點(diǎn)A重合,三角扳的一邊交CD于點(diǎn)F.另一邊交CB的延長線于點(diǎn)G.
(1)求證:EF=EG;
(2)如圖2,移動三角板,使頂點(diǎn)E始終在正方形ABCD的對角線AC上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請給予證明:若不成立.請說明理由:
(3)如圖3,將(2)中的“正方形ABCD”改為“矩形ABCD”,且使三角板的一邊經(jīng)過點(diǎn)B,其他條件不變,若AB=a、BC=b,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校舉行圖書節(jié)義賣活動,將所售款項(xiàng)捐給其他貧困學(xué)生.在這次義賣活動中,某班級售書情況如表:
售價(jià) | 3元 | 4元 | 5元 | 6元 |
數(shù)目 | 14本 | 11本 | 10本 | 15本 |
下列說法正確的是( )
A. 該班級所售圖書的總收入是226元
B. 在該班級所售圖書價(jià)格組成的一組數(shù)據(jù)中,中位數(shù)是4
C. 在該班級所售圖書價(jià)格組成的一紐數(shù)據(jù)中,眾數(shù)是15
D. 在該班級所售圖書價(jià)格組成的一組數(shù)據(jù)中,方差是2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com