【題目】如圖,拋物線 與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,拋物線對稱軸與x軸相交于點(diǎn)M,
(1)求△ABC的面積;
(2)若p是x軸上方的拋物線上的一個(gè)動(dòng)點(diǎn),求點(diǎn)P到直線BC的距離的最大值;
(3)若點(diǎn)P在拋物線上運(yùn)動(dòng)(點(diǎn)P異于點(diǎn)A),當(dāng)∠PCB=∠BCA時(shí),求直線PC的解析式.
【答案】
(1)
解:令y=0,則有﹣ x2+4x﹣6=﹣ (x﹣2)(x﹣6)=0,
解得:x1=2,x2=6,
即點(diǎn)A(2,0),點(diǎn)B(6,0).
令x=0,則y=﹣6,
即點(diǎn)C(0,6).
∴AB=4,CO=6.
△ABC的面積S△ABC= ABCO= ×4×6=12
(2)
解:設(shè)直線BC的解析式為y=kx+b,
∵點(diǎn)B(6,0),點(diǎn)C(0,﹣6),
∴有 ,解得 ,
∴直線BC的解析式為y=x﹣6.
設(shè)經(jīng)過動(dòng)點(diǎn)P且平行于直線BC的直線解析式為y1=x+a.
將y1=x+a代入拋物線y=﹣ x2+4x﹣6中得: x2﹣3x+6+a=0,
若直線y1=x+a與拋物線相切,則有:
△=(﹣3)2﹣4× ×(6+a)=0,即3+2a=0,
解得:a=﹣ .
∴ ﹣3x+6﹣ =0,即x2﹣6x+9=0,
解得:x=3,
將x=3代入y1=x﹣ ,得y1= ,
∴此時(shí)P點(diǎn)坐標(biāo)為(3, )在x軸上方.
∵直線BC的解析式為x﹣y﹣6=0,
∴點(diǎn)P到直線BC的距離= = .
故點(diǎn)P到直線BC的距離的最大值為
(3)
解:過點(diǎn)A作AE⊥BC與點(diǎn)E,并延長AE交直線CP與點(diǎn)D,如圖所示.
∵點(diǎn)A(2,0),點(diǎn)B(6,0),點(diǎn)O(0,0),點(diǎn)C(0,﹣6),
∴AB=4,OA=2,OC=6,OB=6.
由勾股定理可知:AC= =2 ,BC= =6 ,
∴sin∠OBC= = = ,AE=2 .
∵∠PCB=∠ACB,且BC⊥AD,
∴CD=CA=2 ,DE=AE=2 (等腰三角形三線合一),
∴AD=AE+DE=4 .
設(shè)點(diǎn)D坐標(biāo)為(m,n),
則由兩點(diǎn)間的距離公式可知,
,解得 (舍去)或 .
即此時(shí)點(diǎn)D的坐標(biāo)為(6,﹣4).
設(shè)直線CP的解析式為y=k1x﹣6,將D點(diǎn)坐標(biāo)代入得:
﹣4=6k1﹣6,解得:k1= .
∴若點(diǎn)P在拋物線上運(yùn)動(dòng)(點(diǎn)P異于點(diǎn)A),當(dāng)∠PCB=∠BCA時(shí),直線PC的解析式為y= x﹣6.
【解析】(1)令x=0,可得點(diǎn)C坐標(biāo),令y=0,可得點(diǎn)A、B坐標(biāo),再結(jié)合三角形面積公式,即可得出結(jié)論;(2)找與直線BC平行且過動(dòng)點(diǎn)P的直線,令此直線與拋物線相切,看切點(diǎn)P是否在x軸上方,如果在,則切點(diǎn)P到直線BC的距離就是所求最大距離,若不在,只需考慮端點(diǎn)A、B到直線BC的距離即可;(3)過點(diǎn)A作AE⊥BC與點(diǎn)E,并延長AE交直線CP與點(diǎn)D,巧妙利用等腰三角形的三線合一,找出AD、CD的長度,根據(jù)兩點(diǎn)間的距離公式即可得出結(jié)論,不過此處要注意到會(huì)產(chǎn)生增根.
【考點(diǎn)精析】通過靈活運(yùn)用二次函數(shù)的圖象和二次函數(shù)的性質(zhì),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(diǎn)(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是拋物線上兩點(diǎn),則y1<y2 , 其中說法正確的是( )
A.①②
B.②③
C.①②④
D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,對角線AC平分角∠BAD,點(diǎn)P是△ABC內(nèi)一點(diǎn),連接PA、PB、PC,若PA=6,PB=8,PC=10,則菱形ABCD的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)二次函數(shù)的圖象經(jīng)過點(diǎn)A、C、B三點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)C在y軸的正半軸上,且AB=OC.
(1)求點(diǎn)C的坐標(biāo);
(2)求這個(gè)二次函數(shù)的解析式,并求出該函數(shù)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的3倍時(shí),我們稱此三角形為“夢想三角形”.如果一個(gè)“夢想三角形”有一個(gè)角為108°,那么這個(gè)“夢想三角形”的最小內(nèi)角的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠B=∠D,BC=DC,要判定△ABC≌△EDC,當(dāng)添加條件_________時(shí),可根據(jù)“ASA”判定;當(dāng)添加條件_____時(shí),可根據(jù)“AAS”判定;當(dāng)添加條件________時(shí),可根據(jù)“SAS”判定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,延長CB至M,使BM=2,連接AM,BN⊥AM于N,O是AC、BD的交點(diǎn),連接ON,則ON的長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用-1來表示的小數(shù)部分,你同意小明的表示方法嗎?
事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請解答:已知:10+=x+y,其中x是整數(shù),且0<y<1,求x-y的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD.
(1)P是 上一點(diǎn)(不與C、D重合),求證:∠CPD=∠COB;
(2)點(diǎn)P′在劣弧CD上(不與C、D重合)時(shí),∠CP′D與∠COB有什么數(shù)量關(guān)系?請證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com