【題目】如圖,商丘市睢陽區(qū)南湖中有一小島,湖邊有一條筆直的觀光小道,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小坤在小道上測得如下數(shù)據(jù):AB=200.0米,∠PAB=38.5°,∠PBA=26.5°.請幫助小坤求出小橋PD的長.(結(jié)果精確到0.1米) (參考數(shù)據(jù):sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)
【答案】小橋PD的長度約為61.5米,位于AB之間距B點(diǎn)約123.0米.
【解析】
設(shè)PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=200.0米,可得出方程,解出即可得出PD的長度,繼而也可確定小橋在小道上的位置.
設(shè)PD=x米,
∵PD⊥AB,
∴∠ADP=∠BDP=90°,
在Rt△PAD中,tan∠PAD= ,
∴AD= ≈ = x,
在Rt△PBD中,tan∠PBD= ,
∴DB= ≈ =2x,
又∵AB=200.0米,
∴ x+2x=200.0,
解得:x≈61.5,即PD≈61.5(米),
∴DB=123.0(米).
答:小橋PD的長度約為61.5米,位于AB之間距B點(diǎn)約123.0米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將一塊含有角的直角三角板如圖放置,直角頂點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為,頂點(diǎn)恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿軸正方向平移,當(dāng)頂點(diǎn)恰好落在該雙曲線上時停止運(yùn)動,則此時點(diǎn)的對應(yīng)點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C三地在同一條路上,A地在B地的正南方3千米處,甲、乙兩人分別從A、B兩地向正北方向的目的地C勻速直行,他們分別和A地的距離s(千米)與所用的時間t(小時)的函數(shù)關(guān)系如圖所示.
(1)圖中的線段l1是 (填“甲”或“乙”)的函數(shù)圖象,C地在B地的正北方向 千米處;
(2)誰先到達(dá)C地?并求出甲乙兩人到達(dá)C地的時間差;
(3)如果速度慢的人在兩人相遇后立刻提速,并且比先到者晚1小時到達(dá)C地,求他提速后的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請求出點(diǎn)P的坐標(biāo);
(3)有一個點(diǎn)M從點(diǎn)A出發(fā),以每秒1個單位的速度在AB上向點(diǎn)B運(yùn)動,另一個點(diǎn)N從點(diǎn)D與點(diǎn)M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運(yùn)動,當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時,點(diǎn)M、N同時停止運(yùn)動,問點(diǎn)M、N運(yùn)動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.線段AB、DC分別表示甲、乙兩座建筑物的高.AB⊥BC,DC⊥BC,兩建筑物間距離BC=30米,若甲建筑物高AB=28米,在A點(diǎn)測得D點(diǎn)的仰角α=45°,則乙建筑物高DC=______米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE∥BC,且過△ABC的重心,分別與AB,AC交于點(diǎn)D,E,點(diǎn)P是線段DE上一點(diǎn),CP的延長線交AB于點(diǎn)Q,如果 = ,那么S△DPQ:S△CPE的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊隊要從甲、乙、丙、丁四人中選拔一名選手參賽,在選拔賽中,每人射擊10次,然后從他們的成績平均數(shù)(環(huán))及方差兩個因素進(jìn)行分析,甲、乙、丙的成績分析如表所示,丁的成績?nèi)鐖D所示.
甲 | 乙 | 丙 | |
平均數(shù) | 7.9 | 7.9 | 8.0 |
方差 | 3.29 | 0.49 | 1.8 |
根據(jù)以上圖表信息,參賽選手應(yīng)選( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器城經(jīng)銷A型號彩電,今年四月份每臺彩電售價與去年同期相比降價500元,結(jié)果賣出彩電的數(shù)量相同,但去年銷售額為5萬元,今年銷售額為4萬元.
(1)問去年四月份每臺A型號彩電售價是多少元?
(2)為了改善經(jīng)營,電器城決定再經(jīng)銷B型號彩電.已知A型號彩電每臺進(jìn)貨價為1800元,B型號彩電每臺進(jìn)貨價為1500元,電器城預(yù)計用不多于3.3萬元且不少于3.2萬元的資金購進(jìn)這兩種彩電共20臺,問有哪幾種進(jìn)貨方案?
(3)電器城準(zhǔn)備把A型號彩電繼續(xù)以原價出售,B型號彩電以每臺1800元的價格出售,在這批彩電全部賣出的前提下,如何進(jìn)貨才能使電器城獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD、CEFG是正方形,E在CD上,直線BE、DG交于H,且HEHB=4-2,BD、AF交于M,當(dāng)E在線段CD(不與C、D重合)上運(yùn)動時,下列四個結(jié)論:①BE⊥GD;②AF、GD所夾的銳角為45°;③GD=AM;④若BE平分∠DBC,則正方形ABCD的面積為4,其中結(jié)論正確的是______(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com