【題目】已知矩形,,,將它繞著點按順時針方向旋轉(zhuǎn)得到矩形,此時,這兩邊所在的直線分別與邊所在的直線相交于點,當(dāng)時,的長為________

【答案】

【解析】

PH⊥C1D1(如圖),證明∴△BPC≌△PQH,根據(jù)全等三角形的性質(zhì)得到PQ=PB,又因DP:DQ=1:2,所以DP=BP=PQ;設(shè)DP=x,則BP=x,PC=DC-DP=8-x,在Rt△BCP中,利用勾股定理可得方程(8-x)2+42=x2,解方程求得x=5,即可求得DP的長.

PH⊥C1D1,如圖,

∵矩形ABCD繞著點B按順時針方向旋轉(zhuǎn)得到矩形A1BC1D1,

∴BC=BC1=4,

易得四邊形BPHC1為矩形,

∴PH=BC1

∴BC=PH,

∵C1D1∥A1B,

∴∠BPC=∠PQH,

在△BPC和△PQH中, ,

∴△BPC≌△PQH,

∴PQ=PB,

∵DP:DQ=1:2,

∴DP=BP=PQ,

設(shè)DP=x,則BP=x,PC=DC-DP=8-x,

Rt△BCP中,(8-x)2+42=x2,解得x=5,

DP的長為5.

故答案為:5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在電線桿上的處引拉線、固定電線桿,拉線和地面所成的角,在離電線桿米的處安置高為米的測角儀,在處測得電線桿上處的仰角為,求拉線的長(結(jié)構(gòu)保留一位小數(shù),參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D在線段BC上,若BCDE,ACDC,ABEC,且∠ACE180°—ABC—2x°,則下列角中,大小為的角是

A.EFCB.ABCC.FDCD.DFC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進(jìn)某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GEBC,垂足為點E,GFCD,垂足為點F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說明理由:

(3)拓展與運用:

正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CGAD于點H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點上,過點的切線

求證:;

延長,使,連接交于點,若的半徑為,,求的外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(知識生成)我們已經(jīng)知道,通過計算幾何圖形的面積可以表示一些代數(shù)恒等式.例如圖1可以得到(a+b2a2+2ab+b2,基于此,請解答下列問題:

1)根據(jù)圖2,寫出一個代數(shù)恒等式:   

2)利用(1)中得到的結(jié)論,解決下面的問題:若a+b+c10,ab+ac+bc35,則a2+b2+c2   

3)小明同學(xué)用圖3x張邊長為a的正方形,y張邊長為b的正方形,z張寬、長分別為ab的長方形紙片拼出一個面積為(2a+b)(a+2b)長方形,則x+y+z   

(知識遷移)(4)事實上,通過計算幾何圖形的體積也可以表示一些代數(shù)恒等式,圖4表示的是一個邊長為x的正方體挖去一個小長方體后重新拼成一個新長方體,請你根據(jù)圖4中圖形的變化關(guān)系,寫出一個代數(shù)恒等式:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,格點ABC(頂點是網(wǎng)格線的交點)在平面直角坐標(biāo)系中的位置如圖所示.

1)將ABC先向下平移2個單位長度,再向右平移8個單位長度,畫出平移后的A1B1C1,并寫出頂點B1的坐標(biāo);

2)作ABC關(guān)于y軸的對稱圖形A2B2C2,并寫出項點B2的坐標(biāo);

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】魏晉時期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù).為計算圓周率建立了嚴(yán)密的理論和完善的算法.作圓內(nèi)接正多邊形,當(dāng)正多邊形的邊數(shù)不斷增加時,其周長就無限接近圓的周長,進(jìn)而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎(chǔ)上繼續(xù)努力,當(dāng)正多邊形的邊數(shù)增加24576時,得到了精確到小數(shù)點后七位的圓周率,這一成就在當(dāng)時是領(lǐng)先其他國家一千多年,如圖,依據(jù)“割圓術(shù)”,由圓內(nèi)接正六邊形算得的圓周率的近似值是( 。

A. 0.5 B. 1 C. 3 D. π

查看答案和解析>>

同步練習(xí)冊答案