【題目】因式分解
(1)a(x﹣y)﹣b(y﹣x)
(2)4x2﹣64
(3)x4﹣18x2+81
(4)81(a+b)2﹣25(a﹣b)2 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】茂名濱海新區(qū)成立以來,發(fā)展勢頭良好,重點項目投入已超過2000億元,2000億元用科學(xué)記數(shù)法表示為億元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為確保廣大居民家庭基本用水需求的同時鼓勵家庭節(jié)約用水,對居民家庭每戶每月用水量采用分檔遞增收費(fèi)的方式,每戶每月用水量不超過基本用水量的部分享受基本價格,超出基本用水量的部分實行超價收費(fèi).為對基本用水量進(jìn)行決策,隨機(jī)抽查戶居民家庭每戶每月用水量的數(shù)據(jù),整理繪制出下面的統(tǒng)計表:
(1)為確保%的居民家庭每戶每月的基本用水量需求,那么每戶每月的基本用水量最低應(yīng)確定為多少立方米?
(2)若將(1)中確定的基本用水量及其以內(nèi)的部分按每立方米元交費(fèi),超過基本用水量的部分按每立方米元交費(fèi).設(shè)表示每戶每月用水量(單位:),表示每戶每月應(yīng)交水費(fèi)(單位:元),求與的函數(shù)關(guān)系式;
(3)某戶家庭每月交水費(fèi)是元,請按以上收費(fèi)方式計算該家庭當(dāng)月用水量是多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與反比例函數(shù)()的圖像分別交于點和點,與坐標(biāo)軸分別交于點和點.
(1)求直線的解析式;
(2)若點是軸上一動點,當(dāng)與相似時,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P (3, 2),點Q(3, 2),點R(3, 2),點H(3, 2),下面選項中關(guān)于y軸對稱的是( ).
A. P和Q B. P和H C. Q和R D. P和R
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究同一坐標(biāo)系中系數(shù)互為倒數(shù)的正、反比例函數(shù)與的圖象性質(zhì).小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)與,當(dāng)k>0時的圖象性質(zhì)進(jìn)行了探究,下面是小明的探究過程:
(1)如圖所示,設(shè)函數(shù)與圖像的交點為A,B.已知A的坐標(biāo)為(-k,-1),則B點的坐標(biāo)為 .
(2)若P點為第一象限內(nèi)雙曲線上不同于點B的任意一點.
①設(shè)直線PA交x軸于點M,直線PB交x軸于點N.求證:PM=PN.
證明過程如下:設(shè)P(m,),直線PA的解析式為y=ax+b(a≠0).
則 解得
所以,直線PA的解析式為 .
請把上面的解答過程補(bǔ)充完整,并完成剩余的證明.
②當(dāng)P點坐標(biāo)為(1,k)(k≠1)時,判斷ΔPAB的形狀,并用k表示出ΔPAB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com