【題目】兩條平行直線上各有個(gè)點(diǎn),用這個(gè)點(diǎn)按如下規(guī)則連接線段:

①平行線之間的點(diǎn)在連線段時(shí),可以有共同的端點(diǎn),但不能有其它交點(diǎn);

②符合①要求的線段必須全部畫(huà)出.

展示了當(dāng)時(shí)的情況,此時(shí)圖中三角形的個(gè)數(shù)為;圖展示了當(dāng)時(shí)的一種情況,此時(shí)圖中三角形的個(gè)數(shù)為.試回答下列問(wèn)題:

當(dāng)時(shí),請(qǐng)?jiān)趫D中畫(huà)出使三角形個(gè)數(shù)最少的圖形,此時(shí)圖中三角形的個(gè)數(shù)是________

試猜想當(dāng)有對(duì)點(diǎn)時(shí),按上述規(guī)則畫(huà)出的圖形中,最少有________個(gè)三角形;

當(dāng)時(shí),按上述規(guī)則畫(huà)出的圖形中,最少有________個(gè)三角形.

【答案】42(n-1)4022

【解析】

(1)根據(jù)題意畫(huà)出圖形,根據(jù)圖形數(shù)出三角形個(gè)數(shù)即可得出答案;

(2)分析可得,當(dāng)n=1時(shí)的情況,此時(shí)圖中三角形的個(gè)數(shù)為0,有0=2(11);當(dāng)n=2時(shí)的一種情況,此時(shí)圖中三角形的個(gè)數(shù)為2,有2=2(21);…故當(dāng)有n對(duì)點(diǎn)時(shí),最少可以畫(huà)2(n1)個(gè)三角形;

(3)當(dāng)n=2012時(shí),按上述規(guī)則畫(huà)出的圖形中,最少有2×(20121)=4022個(gè)三角形.

(1)

如圖:

此時(shí)圖中三角形的個(gè)數(shù)是:4個(gè);

故答案為:4;

(2)當(dāng)有n對(duì)點(diǎn)時(shí),最少可以畫(huà)2(n1)個(gè)三角形;

故答案為:2(n1);

(3)2×(20121)=4022個(gè),

當(dāng)n=2012時(shí),最少可以畫(huà)4022個(gè)三角形,

故答案為:4022.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,拋物線y=ax2+bx(a<0)的圖象與x軸交于A、O兩點(diǎn),頂點(diǎn)為B,將該拋物線的圖象繞原點(diǎn)O旋轉(zhuǎn)180°后,與x軸交于點(diǎn)C,頂點(diǎn)為D,若此時(shí)四邊形ABCD恰好為矩形,則b的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的兩條角平分線BD、CE交于O,且A=60°,則下列結(jié)論中不正確的是( )

A.BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論中正確的是( )

A. 三角形的一個(gè)外角大于這個(gè)三角形的任何一個(gè)內(nèi)角

B. 三角形按邊分類(lèi)可以分為:不等邊三角形、等腰三角形、等邊三角形

C. 三角形的三個(gè)內(nèi)角中,最多有一個(gè)鈍角

D. 若三條線段、,滿足,則此三條線段一定能組成三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y= x2(0≤x≤2)的圖象記為曲線C1 , 將C1繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得曲線C2
(1)請(qǐng)畫(huà)出C2;
(2)寫(xiě)出旋轉(zhuǎn)后A(2,5)的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);
(3)直接寫(xiě)出C1旋轉(zhuǎn)至C2過(guò)程中掃過(guò)的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是 的中點(diǎn),CE⊥AB于E,BD交CE于點(diǎn)F.
(1)求證:CF=BF;
(2)若CD=6,AC=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用直尺和圓規(guī)作一個(gè)角等于已知角的作法如下:

①以點(diǎn)O為圓心,以任意長(zhǎng)為半徑畫(huà)弧,分別交OA、OB于點(diǎn)D、C;

②作射線O′B′,以點(diǎn)O′為圓心,以   長(zhǎng)為半徑畫(huà)弧,交O′B′于點(diǎn)C′;

③以點(diǎn)C′為圓心,以   長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)D′;

④過(guò)點(diǎn)D′作射線O′A′,∴∠A′O′B′為所求.

(1)請(qǐng)將上面的作法補(bǔ)充完整;

(2)OCD≌△O′C′D′的依據(jù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=3x﹣3分別交x軸,y軸于A,B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn)(與點(diǎn)A不重合),點(diǎn)D是拋物線的頂點(diǎn),請(qǐng)解答下列問(wèn)題.
(1)求拋物線的解析式;
(2)判斷△BCD的形狀,并說(shuō)明理由;
(3)求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案