【題目】如圖在中,若分別垂直平分, ,則的度數(shù)為( )
A.80°B.70°C.60°D.50°
科目:初中數(shù)學 來源: 題型:
【題目】八(2)班組織了一次經(jīng)典朗讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤?/span>(單位:分):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;
(2)計算乙隊的平均成績和方差;
(3)已知甲隊成績的方差是1.4 分 2,則成績較為整齊的是 隊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是線段AB的中點,DC⊥BC,作∠EAB=∠B,DE∥BC,連接CE.若,設△BCD的面積為S,則用S表示△ACE的面積正確的是( )
A.B.3S
C.4SD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某武警部隊在一次地震搶險救災行動中,探險隊員在相距4米的水平地面A,B兩處均探測出建筑物下方C處有生命跡象,已知在A處測得探測線與地面的夾角為30°,在B處測得探測線與地面的夾角為60°,求該生命跡象C所在位置的深度.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=4,BC=6,動點P為矩形邊上的一點,點P沿著B﹣C的路徑運動(含點B和點C),則△ADP的外接圓的圓心O的運動路徑長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的面積是12,AB=AC,BC=3,邊AC的垂直平分線交AC于F,交AB于E.點D是BC的中點,點P是EF上的一個動點,則△PCD的周長最小值是( )
A.4B.8C.7D.9.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個自然數(shù)可以表示為兩個連續(xù)奇數(shù)的立方差,那么我們就稱這個自然數(shù)為“麻辣數(shù)”.如:所以2,26均為“麻辣數(shù)”.注:立方差公式
(1)請判斷98和169是否為“麻辣數(shù)”,并說明理由;
(2)請求出在不超過2016的自然數(shù)中,所有的“麻辣數(shù)”之和為多少?寫出完整的求解過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】勾股定理是幾何學中的明珠,充滿著魅力,千百年來,人們對它趨之若鶩,其中有著名的數(shù)學家,也有業(yè)余數(shù)學愛好者,向常春在1994年構(gòu)造發(fā)現(xiàn)了一個新的證法:把兩個全等的直角三角形如圖1放置,其三邊長分別為a、b、c,顯然∠DAB=∠B=90°,AC⊥DE.
(1)請用a、b、c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再通過探究這三個圖形面積之間的關(guān)系,證明:勾股定理a2+b2=c2;
(2)如圖2,鐵路上A、B兩點(看作直線上的兩點)相距40千米,C、D為兩個村莊(看作兩個點),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=24千米,BC=16千米,在AB上有一個供應站P,且PC=PD,求出AP的距離;
(3)借助(2)的思考過程與幾何模型,直接寫出代數(shù)式的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com