【題目】下列圖形中,對稱軸的條數(shù)最多的圖形是( 。

A. 線段 B. C. 等腰三角形 D. 正方形

【答案】D

【解析】

根據(jù)如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形叫做軸對稱圖形,這條直線叫做對稱軸進(jìn)行分析即可.

A、線段有2條對稱軸,故此選項(xiàng)錯(cuò)誤;

B、角有1條對稱軸,故此選項(xiàng)錯(cuò)誤;

C、等腰三角形有1條或3條對稱軸,故此選項(xiàng)錯(cuò)誤;

D、正方形有4條對稱軸,故此選項(xiàng)正確;

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線AC上的兩點(diǎn),∠1=2.

(1)求證:AE=CF;

(2)求證:四邊形EBFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科學(xué)考察組進(jìn)行科學(xué)考察,要翻過一座山,上午8時(shí)上山,每小時(shí)行3km,到山頂后休息一小時(shí).下山比上山每小時(shí)多行2km,下午2時(shí)到達(dá)山底,全程19km.上山、下山各行了多少km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各點(diǎn)中,位于平面直角坐標(biāo)系第四象限的點(diǎn)是( 。

A. (1,2) B. (﹣1,2) C. (1,﹣2) D. (﹣1,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列等式成立的是( )

A. -a-b2+a-b2=-4ab B. -a-b2+a-b2=a2+b2

C. -a-b)(a-b=a-b2 D. -a-b)(a-b=b2-a2

【答案】D

【解析】解析:∵-a-b2+a-b2=a+b2+a-b2=a2+2ab+b2+a2-2ab+b2=2a2+2b2,

∴選項(xiàng)A與選項(xiàng)B錯(cuò)誤;

-a-b)(a-b=-a+b)(a-b=-a2-b2=b2-a2,∴選項(xiàng)C錯(cuò)誤,選項(xiàng)D正確.

故選D.

型】單選題
結(jié)束】
8

【題目】x=1,y=x2+4xy+4y2的值是

A. 2 B. 4 C. 32 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】共享單車近日成為市民新寵,越來越多的居民選擇共享單車作為出行的交通工具,某中學(xué)課外興趣小組為了了解某小區(qū)居民每周使用共享單車時(shí)間的情況,隨機(jī)抽取了該小區(qū)部分使用共享單車的居民進(jìn)行調(diào)查(問卷調(diào)查表如圖所示),并用調(diào)查結(jié)果繪制了圖①、圖②兩幅每周使用共享單車時(shí)間的人數(shù)統(tǒng)計(jì)圖(均不完整),請根據(jù)統(tǒng)計(jì)圖解答以下問題:

(1)本次接受問卷調(diào)查的共有 人;在扇形統(tǒng)計(jì)圖中“D”選項(xiàng)所占的百分比為 ;

(2)扇形統(tǒng)計(jì)圖中,“B”選項(xiàng)所對應(yīng)扇形圓心角為 度;

(3)請補(bǔ)全條形統(tǒng)計(jì)圖;

(4)若該小區(qū)共有1200名居民,請你估計(jì)該小區(qū)使用共享單車的時(shí)間在A選項(xiàng)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,□ABCD的對角線交于點(diǎn)O,點(diǎn)E在邊BC的延長線上,且OE=OB,連接DE

(1)求證:BDE是直角三角形;

(2)如果OECD,試判斷BDEDCE是否相似,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地原有沙漠108公頃,綠洲54公頃,為改善生態(tài)環(huán)境,防止沙化現(xiàn)象,當(dāng)?shù)卣畬?shí)施了沙漠變綠洲”工程,要把部分沙漠改造為綠洲,使綠洲面積占沙漠面積的80%.設(shè)把x公頃沙漠改造為綠洲,則可列方程為( )
A.54+x=80%×108
B.54+x=80%(108-x)
C.54-x=80%(108+x)
D.108-x=80%(54+x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中, 利用面積法證明勾股定理.

查看答案和解析>>

同步練習(xí)冊答案