【題目】在創(chuàng)建“全國文明城市”和“省級文明城區(qū)”過程中,欒城區(qū)污水處理廠決定先購買A、B兩型污水處理設(shè)備共20臺,對城區(qū)周邊污水進(jìn)行處理.已知每臺A型設(shè)備價格為12萬元,每臺B型設(shè)備價格為10萬元;1臺A型設(shè)備和2臺B型設(shè)備每周可以處理污水640噸,2臺A型設(shè)備和3臺B型設(shè)備每周可以處理污水1080噸.

(1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少噸?

(2)要想使污水處理廠購買設(shè)備的資金不超過230萬元,但每周處理污水的量又不低于4500噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少?

【答案】(1)A型污水處理設(shè)備每周每臺可以處理污水240噸,B型污水處理設(shè)備每周每臺可以處理污水200噸;(2)具體方案見解析,購買A型污水處理設(shè)備13臺、B型污水處理設(shè)備7臺時,所需購買資金最少,最少是226萬元.

【解析】試題分析:(1)根據(jù)1臺A型污水處理設(shè)備和2臺B型污水處理設(shè)備每周可以處理污水640噸,2臺A型污水處理設(shè)備和3臺B型污水處理設(shè)備每周可以處理污水1080噸,可以列出相應(yīng)的二元一次方程組,從而解答本題;

(2)根據(jù)題意可以列出相應(yīng)的不等式組,從而可以得到購買方案,從而可以算出每種方案購買資金,從而可以解答本題.

試題解析:(1)設(shè)A型污水處理設(shè)備每周每臺可以處理污水x噸,B型污水處理設(shè)備每周每臺可以處理污水y噸,依題意有

,

解得

即A型污水處理設(shè)備每周每臺可以處理污水240噸,B型污水處理設(shè)備每周每臺可以處理污水200噸;

(2)設(shè)購買A型污水處理設(shè)備x臺,則購買B型污水處理設(shè)備(20﹣x)臺,

,

解得12.5≤x≤15,

第一種方案:當(dāng)x=13時,20﹣x=7,花費的費用為:13×12+7×10=226萬元;

第二種方案:當(dāng)x=14時,20﹣x=6,花費的費用為:14×12+6×10=228萬元;

第三種方案;當(dāng)x=15時,20﹣x=5,花費的費用為:15×12+5×10=230萬元;

即購買A型污水處理設(shè)備13臺、購買B型污水處理設(shè)備7臺時,所需購買資金最少,最少是226萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經(jīng)過幾秒,使PBQ的面積等于8cm2?

(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將ABC分成面積相等的兩部分?若能,求出運(yùn)動時間;若不能說明理由.

(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,PBQ的面積為1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點C為直徑BA的延長線上一點,CD切⊙O于點D,

(Ⅰ)如圖①,若∠CDA=26°,求∠DAB的度數(shù);

(Ⅱ)如圖②,過點B作⊙O的切線交CD的延長線于點E,若⊙O的半徑為3,BC=10,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超速行駛是一種十分危險的違法駕駛行為,在一條東西走向的筆直高速公路MN上,小型車限速為每小時100千米. 現(xiàn)有一輛小汽車行駛到A處時,發(fā)現(xiàn)北偏東30°方向200米處有一超速監(jiān)測儀P. 10秒后,小汽車行駛至B處,測得監(jiān)測儀PB處的北偏西45°方向上. 請問:這輛車超速了嗎?通過計算說明理由.(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某高樓頂部有一信號發(fā)射塔,在矩形建筑物ABCDA、C兩點測得該塔頂端F的仰角分別為∠α=48°和∠β=65°,矩形建筑物寬度AD=20m,高度CD=30m,則信號發(fā)射塔頂端到地面的高度FG__米(結(jié)果精確到1m).

參考數(shù)據(jù):sin48°=0.7cos48°=0.7,tan48°=1.1,cos65°=0.4,tan65°=2.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形AOBO2的頂點A的坐標(biāo)為A(0,2),O1為正方形AOBO2的中心;以正方形AOBO2的對角線AB為邊,在AB的右側(cè)作正方形ABO3A1,O2為正方形ABO3A1的中心;再以正方形ABO3A1的對角線A1B為邊,在A1B的右側(cè)作正方形A1BB1O4,O3為正方形A1BB1O4的中心;再以正方形A1BB1O4的對角線A1B1為邊在A1B1的右側(cè)作正方形A1B1O5A2,O4為正方形A1B1O5A2的中心:;按照此規(guī)律繼續(xù)下去,則點O2018的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).

(1)求證:無論m為何值時,這個方程總有兩個實數(shù)根;

(2)若方程的兩個實數(shù)根都是整數(shù),求正整數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1l2相互平行,ABl1上的兩點,C、Dl2上的兩點,某人在點A處測得∠CAB=90°,DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點E(點E在線段AB上),測得∠DEB=60°,求CD兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當(dāng)﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

同步練習(xí)冊答案