【題目】我縣某包裝生產企業(yè)承接了一批上海世博會的禮品盒制作業(yè)務,為了確保質量,該企業(yè)進行試生產.他們購得規(guī)格是170cm×40cm的標準板材作為原材料,每張標準板材再按照裁法一或裁法二裁下A型與B型兩種板材.如圖1所示,(單位:cm)
(1)列出方程(組),求出圖甲中a與b的值.
(2)在試生產階段,若將30張標準板材用裁法一裁剪,4張標準板材用裁法二裁剪,再將得到的A型與B型板材做側面和底面,做成圖2的豎式與橫式兩種無蓋禮品盒.
①兩種裁法共產生A型板材 張,B型板材 張;
②設做成的豎式無蓋禮品盒x個,橫式無蓋禮品盒的y個,根據題意完成表格:
③做成的豎式和橫式兩種無蓋禮品盒總數最多是 個;此時,橫式無蓋禮品盒可以做 個.(在橫線上直接寫出答案,無需書寫過程)
【答案】(1)a=60,b=40;(2)①64,38;②2y;③20,16或17或18.
【解析】
(1)由圖示列出關于a、b的二元一次方程組求解;
(2)根據已知和圖示計算出兩種裁法共產生A型板材和B型板材的張數,同樣由圖示完成表格,并完成計算.
(1)由題意得:,解得:.
答:圖甲中a與b的值分別為:60、40.
(2)①由圖示裁法一產生A型板材為:2×30=60,裁法二產生A型板材為:1×4=4,所以兩種裁法共產生A型板材
為60+4=64(張),由圖示裁法一產生B型板材為:1×30=30,裁法二產生A型板材為,2×4=8,所以兩種裁法共產生B型板材
為30+8=38(張).
故答案為:64,38.
②由已知和圖示得:橫式無蓋禮品盒的y個,每個禮品盒用2張B型板材,所以用B型板材2y張.
③由上表可知橫式無蓋款式共5y個面,用A型3y張,則B型需要2y張.
則做兩款盒子共需要A型4x+3y張,B型x+2y張.
則4x+3y≤64;x+2y≤38.兩式相加得5x+5y≤102.
則x+y≤20.4.所以最多做20個.
兩式相減得3x+y≤26.則2x≤5.6,解得x≤2.8.則y≤18.
則橫式可做16,17或18個.
故答案為:20,16或17或18.
科目:初中數學 來源: 題型:
【題目】(1)如圖①,在△ABC中,∠ABC、∠ACB的平分線相交于點O,∠A=40°,求∠BOC的度數;
(2)如圖②,△A′B′C′的外角平分線相交于點O′,∠A′=40°,求∠B′O′C′的度數;
(3)上面(1)(2)兩題中的∠BOC與∠B′O′C′ 有怎樣的數量關系?若∠A=∠A′=n°,∠BOC與∠B′O′C′ 是否還具有這樣的關系?這個結論你是怎樣得到的?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,P為線段AD上的一個動點,PE⊥AD交直線BC于點E.
(1)若∠B=30°,∠ACB=80°,求∠E的度數;
(2)當P點在線段AD上運動時,猜想∠E與∠B、∠ACB的數量關系,寫出結論無需證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一分鐘投籃測試規(guī)定,得6分以上為合格,得9分以上為優(yōu)秀,甲、乙兩組同學的一次測試成績如下:
成績(分) | 4 | 5 | 6 | 7 | 8 | 9 |
甲組(人) | 1 | 2 | 5 | 2 | 1 | 4 |
乙組(人) | 1 | 1 | 4 | 5 | 2 | 2 |
(1)請你根據上述統(tǒng)計數據,把下面的圖和表補充完整;
一分鐘投籃成績統(tǒng)計分析表:
統(tǒng)計量 | 平均分 | 方差 | 中位數 | 合格率 | 優(yōu)秀率 |
甲組 | 2.56 | 6 | 80.0% | 26.7% | |
乙組 | 6.8 | 1.76 | 86.7% | 13.3% |
(2)下面是小明和小聰的一段對話,請你根據(1)中的表,寫出兩條支持小聰的觀點的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O是坐標原點,正方形OABC的頂點A、C分別在x軸與y軸上,已知正方形邊長為3,點D為x軸上一點,其坐標為(1,0),連接CD,點P從點C出發(fā)以每秒1個單位的速度沿折線C→B→A的方向向終點A運動,當點P與點A重合時停止運動,運動時間為t秒.
(1)連接OP,當點P在線段BC上運動,且滿足△CPO≌△ODC時,求直線OP的表達式;
(2)連接PC,求△CPD的面積S關于t的函數表達式;
(3)點P在運動過程中,是否存在某個位置使得△CDP為等腰三角形,若存在,直接寫出點P的坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的兩邊在坐標軸上,連接AC,拋物線y=x2﹣4x﹣2經過A,B兩點.
(1)求A點坐標及線段AB的長;
(2)若點P由點A出發(fā)以每秒1個單位的速度沿AB邊向點B移動,1秒后點Q也由點A出發(fā)以每秒7個單位的速度沿AO,OC,CB邊向點B移動,當其中一個點到達終點時另一個點也停止移動,點P的移動時間為t秒.
①當PQ⊥AC時,求t的值;
②當PQ∥AC時,對于拋物線對稱軸上一點H,∠HOQ>∠POQ,求點H的縱坐標的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數的圖象經過點A(-6,4),B(3,0).
(1)求這個函數的解析式;
(2)畫出這個函數的圖象;
(3)若該直線經過點(9,m),求m的值;
(4)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,EF切⊙O于點D,過點B作BH⊥EF于點H,交⊙O于點C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com