【題目】如圖,把矩形紙片ABCD沿EF翻折,點(diǎn)A恰好落在BC邊的A′處,若AB= ,∠EFA=60°,則四邊形A′B′EF的周長(zhǎng)是(
A.1+3
B.3+
C.4+
D.5+

【答案】D
【解析】解:如圖,
過(guò)點(diǎn)E作EG⊥AD,
∴∠AGE=∠FGE=90°
∵矩形紙片ABCD,
∴∠A=∠B=∠AGE=90°,
∴四邊形ABEG是矩形,
∴BE=AG,EG=AB=
在Rt△EFG中,∠EFG=60°,EG= ,
∴FG=1,EF=2,
由折疊有,A'F=AF,A'B'=AB= ,BE=B'E,∠A'FE=∠AFE=60°,
∵BC∥AD,
∴∠A'EF=∠AFE=60°,
∴△A'EF是等邊三角形,
∴A'F=EF=2,
∴AF=A'F=2,
∴BE=AG=AF﹣FG=2﹣1=1
∴B'E=1
∴四邊形A′B′EF的周長(zhǎng)是A'B'+B'E+EF+A'F= +1+2+2=5+
故選D.
【考點(diǎn)精析】本題主要考查了矩形的性質(zhì)和翻折變換(折疊問(wèn)題)的相關(guān)知識(shí)點(diǎn),需要掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD
(1)求證:BD平分∠ABC;
(2)當(dāng)∠ODB=30°時(shí),求證:BC=OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(2,2),B(﹣6,﹣4),C(2,﹣4).
(1)求△ABC的外接圓的圓心點(diǎn)M的坐標(biāo);
(2)求△ABC的外接圓在x軸上所截弦DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在1個(gè)不透明的口袋里,裝有紅、白、黃三種顏色的乒乓球(除顏色外,其余都相同),其中有白球2個(gè),黃球1個(gè),若從中任意摸出一個(gè)球,這個(gè)球是白色的概率為0.5.
(1)求口袋中紅球的個(gè)數(shù);
(2)若摸到紅球記0分,摸到白球記1分,摸到黃球記2分,甲從口袋中摸出一個(gè)球,不放回,再找出一個(gè)畫(huà)樹(shù)狀圖的方法求甲摸的兩個(gè)球且得2分的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在半徑為2的半圓O中,半徑OA垂直于直徑BC,點(diǎn)E與點(diǎn)F分別在弦AB、AC上滑動(dòng)并保持AE=CF,但點(diǎn)F不與A、C重合,點(diǎn)E不與A、B重合.
(1)求四邊形AEOF的面積.
(2)設(shè)AE=x,SOEF=y,寫(xiě)出y與x之間的函數(shù)關(guān)系式,求x取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列調(diào)查中,適合用全面調(diào)查方式的是(

A.調(diào)查“神舟十一號(hào)”飛船重要零部件的產(chǎn)品質(zhì)量B.調(diào)查某電視劇的收視率

C.調(diào)查一批炮彈的殺傷力D.調(diào)查一片森林的樹(shù)木有多少棵

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩邊相等的三角形的一邊是7,另一邊是4,則此三角形的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題

(1)(x32.(﹣x43 (2)(x5y4x4y3x3y3

(3)2mn.[(2mn)2﹣3n(mn+m2n)] (4)(2a+1)2﹣(2a+1)(2a﹣1)

(5)102+×(π﹣3.14)0﹣|﹣302|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

1)列式:x20的差不小于0;

2)若(1)中的x(單位:cm)是一個(gè)正方形的邊長(zhǎng),現(xiàn)將正方形的邊長(zhǎng)增加2cm,則正方形的面積至少增加多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案