【題目】如圖,在□ABCD中,對角線 AC、BD 相交成的銳角α=30°,若 AC=8,BD=6,則□ABCD的面積是( )
A.6B.8C.10D.12
【答案】D
【解析】
如圖,過點(diǎn)D作DE⊥AC于E點(diǎn),設(shè)AC與BD相交于O點(diǎn),首先根據(jù)平行四邊形性質(zhì)得出DO=3,然后利用直角三角形中30°角所對的直角邊等于斜邊的一半求出DE,由此得出△ACD的面積,最后進(jìn)一步通過證明△ADC△CBA得出△CBA的面積=△ADC的面積,從而即可得出答案.
如圖,過點(diǎn)D作DE⊥AC于E點(diǎn),設(shè)AC與BD相交于O點(diǎn),
∵在平行四邊形ABCD中,AC=8,BD=6,
∴DO=,
∵∠α=30°,DE⊥AC,
∴DE=,
∴△ACD的面積=,
∵四邊形ABCD為平行四邊形,
∴CD=AB,AD=BC,
在△ADC與△CBA中,
∵AD=CB,CD=AB,AC=CA,
∴△ADC△CBA(SSS),
∴△CBA的面積=△ADC的面積=6,
∴該平行四邊形的面積=△CBA的面積+△ADC的面積=12,
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y= kx+b的圖象與反比例函數(shù)的圖象相交于A,B兩點(diǎn), 其中A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)都是2,如圖:
(1)求這個(gè)一次函數(shù)的解析式;
(2)在y軸是否存在一點(diǎn)P使△OAP為等腰三角形?若存在,請求出符合條件的點(diǎn)P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是關(guān)于x的一元二次方程的兩實(shí)數(shù)根.
(1)求m的范圍;
(2)若,求m的值;
(3)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個(gè)三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,九年級(1)班的小明與小艷兩位同學(xué)去操場測量旗桿DE的高度,已知直立在地面上的竹竿AB的長為3 m.某一時(shí)刻,測得竹竿AB在陽光下的投影BC的長為2 m.
(1)請你在圖中畫出此時(shí)旗桿DE在陽光下的投影,并寫出畫圖步驟;
(2)在測量竹竿AB的影長時(shí),同時(shí)測得旗桿DE在陽光下的影長為6 m,請你計(jì)算旗桿DE的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】萬達(dá)旅行社為吸引市民組團(tuán)去黃山風(fēng)景區(qū)旅游,推出了如下的收費(fèi)標(biāo)準(zhǔn):
宿州高鐵新區(qū)組織員工去黃山風(fēng)景區(qū)旅游,共支付給萬達(dá)旅行社旅游費(fèi)用27 000元,請問該單位這次共有多少員工去黃山風(fēng)景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,連接BE交對角線AC于點(diǎn)F,則∠EFC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時(shí)距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,E,F(xiàn)分別是AB與BC邊上的中點(diǎn),連接AF,DE,BD,交于G,H(如圖所示)。求AG:GH:HF的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰三角形板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn)。圖①,②,③是旋轉(zhuǎn)三角板得到的圖形中的3種情況。研究:
(1)三角板ABC繞點(diǎn)P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明。
(2)三角板ABC繞點(diǎn)P旋轉(zhuǎn),△PBE是否能為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時(shí)CE的長);若不能,請說明理由。(圖④不用)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com