【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣x+b與拋物線的另一個(gè)交點(diǎn)為D.
(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);
(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)E,再沿線段ED以每秒個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)D后停止,問當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)Q在整個(gè)運(yùn)動(dòng)過程中所用時(shí)間最少?
【答案】(1) y=﹣x2﹣2x+3;(2) P的坐標(biāo)為(﹣4,﹣)和(﹣6,﹣);(3) (1,﹣4).
【解析】
試題分析:(1)根據(jù)二次函數(shù)的交點(diǎn)式確定點(diǎn)A、B的坐標(biāo),求出直線的解析式,求出點(diǎn)D的坐標(biāo),求出拋物線的解析式;(2)作PH⊥x軸于H,設(shè)點(diǎn)P的坐標(biāo)為(m,n),分△BPA∽△ABC和△PBA∽△ABC,根據(jù)相似三角形的性質(zhì)計(jì)算即可;(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,根據(jù)正切的定義求出Q的運(yùn)動(dòng)時(shí)間t=BE+EF時(shí),t最小即可.
試題解析:(1)∵y=a(x+3)(x﹣1),
∴點(diǎn)A的坐標(biāo)為(﹣3,0)、點(diǎn)B兩的坐標(biāo)為(1,0),
∵直線y=﹣x+b經(jīng)過點(diǎn)A,
∴b=﹣3,
∴y=﹣x﹣3,
當(dāng)x=2時(shí),y=﹣5,
則點(diǎn)D的坐標(biāo)為(2,﹣5),
∵點(diǎn)D在拋物線上,
∴a(2+3)(2﹣1)=﹣5,
解得,a=﹣,
則拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
(2)作PH⊥x軸于H,
設(shè)點(diǎn)P的坐標(biāo)為(m,n),
當(dāng)△BPA∽△ABC時(shí),∠BAC=∠PBA,
∴tan∠BAC=tan∠PBA,即=,
∴=,即n=﹣a(m﹣1),
∴,
解得,m1=﹣4,m2=1(不合題意,舍去),
當(dāng)m=﹣4時(shí),n=5a,
∵△BPA∽△ABC,
∴=,即AB2=ACPB,
∴42=,
解得,a1=(不合題意,舍去),a2=﹣,
則n=5a=﹣,
∴點(diǎn)P的坐標(biāo)為(﹣4,﹣);
當(dāng)△PBA∽△ABC時(shí),∠CBA=∠PBA,
∴tan∠CBA=tan∠PBA,即=,
∴=,即n=﹣3a(m﹣1),
∴,
解得,m1=﹣6,m2=1(不合題意,舍去),
當(dāng)m=﹣6時(shí),n=21a,
∵△PBA∽△ABC,
∴=,即AB2=BCPB,
∴42=,
解得,a1=(不合題意,舍去),a2=﹣,
則點(diǎn)P的坐標(biāo)為(﹣6,﹣),
綜上所述,符合條件的點(diǎn)P的坐標(biāo)為(﹣4,﹣)和(﹣6,﹣);
(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,
則tan∠DAN===
∴∠DAN=60°,
∴∠EDF=60°,
∴DE==EF,
∴Q的運(yùn)動(dòng)時(shí)間t=+=BE+EF,
∴當(dāng)BE和EF共線時(shí),t最小,
則BE⊥DM,E(1,﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若單項(xiàng)式3x2y5與﹣2x1﹣ay3b﹣1是同類項(xiàng),求下面代數(shù)式的值:5ab2﹣[6a2b﹣3(ab2+2a2b)].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水庫的平均水位為80米,在此基礎(chǔ)上,若水位變化時(shí),把水位上升記為正數(shù);水庫管理員記錄了3月~8月水位變化的情況(單位:米):-5,-4,0,+3,+6,+8.試問這幾個(gè)月的實(shí)際水位是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若P(m,n)與Q(n,m)表示同一個(gè)點(diǎn),那么這個(gè)點(diǎn)一定在( )
A. 第二、四象限 B. 第一、三象限 C. 平行于x軸的直線上 D. 平行于y軸的直線上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某項(xiàng)工程由甲乙兩隊(duì)合作12天可以完成,供需工程費(fèi)用13800元,乙隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間的1.5倍,且甲隊(duì)每天的工程費(fèi)用比乙隊(duì)多150元。
(1)甲乙兩隊(duì)單獨(dú)完成這項(xiàng)工程分別需要多少天?
(2)若工程管理部門決定從這兩個(gè)隊(duì)中選一個(gè)隊(duì)單獨(dú)完成這項(xiàng)工程,從節(jié)約資金的角度考慮,應(yīng)該選擇哪個(gè)工程隊(duì)?請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),已知點(diǎn)(1-2a,a-2)在第三象限的角平分線上,求a的值及點(diǎn)的坐標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機(jī)調(diào)查了若干名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)進(jìn)行整理,繪制了如下的不完整統(tǒng)計(jì)圖:
請(qǐng)你根據(jù)以上的信息,回答下列問題:
(1) 本次共調(diào)查了_____名學(xué)生,其中最喜愛戲曲的有_____人;在扇形統(tǒng)計(jì)圖中,最喜愛體育的對(duì)應(yīng)扇形的圓心角大小是______;
(2) 根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛新聞的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com